Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Patch GLM #41

Merged
merged 9 commits into from
Jun 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Missings = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
QuadGK = "1fd47b50-473d-5c70-9696-f719f8f3bcdc"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Expand Down
16 changes: 11 additions & 5 deletions src/RobustModels.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
module RobustModels

using Pkg: Pkg

include("compat.jl")

# Use README as the docstring of the module and doctest README
Expand All @@ -10,10 +12,10 @@ end RobustModels

# Import with `using` to use the module names to prefix the methods
# that are extended from these modules
using GLM
using StatsAPI
using StatsBase
using StatsModels
using GLM: GLM
using StatsAPI: StatsAPI
using StatsBase: StatsBase
using StatsModels: StatsModels

## Import to implement new methods
import Base: show, broadcastable, convert, ==
Expand Down Expand Up @@ -73,18 +75,21 @@ using LinearAlgebra:
inv,
diag,
diagm,
rank,
ldiv!

using Random: AbstractRNG, GLOBAL_RNG
using Printf: @printf, @sprintf
using GLM: FPVector, lm, SparsePredChol, DensePredChol, DensePredQR
using GLM: FPVector, lm, SparsePredChol, DensePredChol
using StatsBase:
AbstractWeights, CoefTable, ConvergenceException, median, mad, mad_constant, sample
using StatsModels:
@delegate,
@formula,
formula,
RegressionModel,
FormulaTerm,
InterceptTerm,
ModelFrame,
modelcols,
apply_schema,
Expand Down Expand Up @@ -238,6 +243,7 @@ abstract type AbstractRegularizedPred{T} end
Base.broadcastable(m::T) where {T<:AbstractEstimator} = Ref(m)
Base.broadcastable(m::T) where {T<:LossFunction} = Ref(m)


include("tools.jl")
include("losses.jl")
include("estimators.jl")
Expand Down
16 changes: 15 additions & 1 deletion src/compat.jl
Original file line number Diff line number Diff line change
@@ -1,10 +1,24 @@
using LinearAlgebra: cholesky!
using LinearAlgebra: cholesky!, qr!

function get_pkg_version(m::Module)
toml = Pkg.TOML.parsefile(joinpath(pkgdir(m), "Project.toml"))
return VersionNumber(toml["version"])
end


## Compatibility layers

# https://github.com/JuliaStats/GLM.jl/pull/459
@static if VERSION < v"1.8.0-DEV.1139"
pivoted_cholesky!(A; kwargs...) = cholesky!(A, Val(true); kwargs...)
else
using LinearAlgebra: RowMaximum
pivoted_cholesky!(A; kwargs...) = cholesky!(A, RowMaximum(); kwargs...)
end

@static if VERSION < v"1.7.0"
pivoted_qr!(A; kwargs...) = qr!(A, Val(true); kwargs...)
else
using LinearAlgebra: ColumnNorm
pivoted_qr!(A; kwargs...) = qr!(A, ColumnNorm(); kwargs...)
end
176 changes: 130 additions & 46 deletions src/linpred.jl
Original file line number Diff line number Diff line change
Expand Up @@ -50,45 +50,143 @@ leverage_weights(p::LinPred, wt::AbstractVector) = sqrt.(1 .- leverage(p, wt))
# beta0
#end

"""
DensePredQR

A `LinPred` type with a dense, unpivoted QR decomposition of `X`
##########################################
###### DensePredQR
##########################################

# Members
@static if get_pkg_version(GLM) < v"1.9"
@warn(
"GLM.DensePredQR(X::AbstractMatrix, pivot::Bool=true) is not defined, " *
"fallback to unpivoted RobustModels.DensePredQR definition. " *
"To use pivoted QR, GLM version should be greater than or equal to v1.9."
)

- `X`: Model matrix of size `n` × `p` with `n ≥ p`. Should be full column rank.
- `beta0`: base coefficient vector of length `p`
- `delbeta`: increment to coefficient vector, also of length `p`
- `scratchbeta`: scratch vector of length `p`, used in `linpred!` method
- `qr`: a `QRCompactWY` object created from `X`, with optional row weights.
"""
DensePredQR

PRED_QR_WARNING_ISSUED = false

function qrpred(X::AbstractMatrix, pivot::Bool=false)
try
return DensePredCG(Matrix(X), pivot)
catch e
if e isa MethodError
# GLM.DensePredCG(X::AbstractMatrix, pivot::Bool) is not defined
global PRED_QR_WARNING_ISSUED
if !PRED_QR_WARNING_ISSUED
@warn(
"GLM.DensePredCG(X::AbstractMatrix, pivot::Bool) is not defined, " *
"fallback to unpivoted QR. GLM version should be >= 1.9."
)
PRED_QR_WARNING_ISSUED = true
using LinearAlgebra: QRCompactWY, QRPivoted, Diagonal, qr!, qr

"""
DensePredQR

A `LinPred` type with a dense QR decomposition of `X`

# Members

- `X`: Model matrix of size `n` × `p` with `n ≥ p`. Should be full column rank.
- `beta0`: base coefficient vector of length `p`
- `delbeta`: increment to coefficient vector, also of length `p`
- `scratchbeta`: scratch vector of length `p`, used in `linpred!` method
- `qr`: a `QRCompactWY` object created from `X`, with optional row weights.
- `scratchm1`: scratch Matrix{T} of the same size as `X`
- `scratchm2`: scratch Matrix{T} of the same size as `X`
- `scratchR`: scratch Matrix{T} of the same size as `qr.R`, a square matrix.
"""
mutable struct DensePredQR{T<:BlasReal,Q<:Union{QRCompactWY,QRPivoted}} <: DensePred
X::Matrix{T} # model matrix
beta0::Vector{T} # base coefficient vector
delbeta::Vector{T} # coefficient increment
scratchbeta::Vector{T}
qr::Q
scratchm1::Matrix{T}
scratchm2::Matrix{T}
scratchR::Matrix{T}

function DensePredQR(X::AbstractMatrix, pivot::Bool=false)
n, p = size(X)
T = typeof(float(zero(eltype(X))))

if false
# if pivot
F = pivoted_qr!(copy(X))
else
if n >= p
F = qr(X)
else
# adjoint of X so R is square
# cannot use in-place qr!
F = qr(X)
end
end
return DensePredCG(Matrix(X))

return new{T,typeof(F)}(
Matrix{T}(X),
zeros(T, p),
zeros(T, p),
zeros(T, p),
F,
similar(X, T),
similar(X, T),
zeros(T, size(F.R)),
)
end
end

# GLM.DensePredQR(X::AbstractMatrix, pivot::Bool) is not defined
function qrpred(X::AbstractMatrix, pivot::Bool=false)
return DensePredQR(Matrix(X))
end

# GLM.delbeta!(p::DensePredQR{T}, r::Vector{T}) is ill-defined
function delbeta!(p::DensePredQR{T,<:QRCompactWY}, r::Vector{T}) where {T<:BlasReal}
n, m = size(p.X)
if n >= m
p.delbeta = p.qr \ r
else
p.delbeta = p.qr' \ r
end
return p
end

# GLM.delbeta!(p::DensePredQR{T}, r::Vector{T}, wt::Vector{T}) is not defined
function delbeta!(
p::DensePredQR{T,<:QRCompactWY}, r::Vector{T}, wt::Vector{T}
) where {T<:BlasReal}
rnk = rank(p.qr.R)
X = p.X
W = Diagonal(wt)
sqrtW = Diagonal(sqrt.(wt))
scratchm1 = p.scratchm1 = similar(X, T)
mul!(scratchm1, sqrtW, X)

n, m = size(X)
if n >= m
# W½ X = Q R , with Q'Q = I
# X'WX β = X'y => R'Q'QR β = X'y
# => β = R⁻¹ R⁻ᵀ X'y
qnr = p.qr = qr(scratchm1)
Rinv = p.scratchR = inv(qnr.R)

scratchm2 = p.scratchm2 = similar(X, T)
mul!(scratchm2, W, X)
mul!(p.delbeta, transpose(scratchm2), r)

p.delbeta = Rinv * Rinv' * p.delbeta
else
rethrow()
# (W½ X)' = Q R , with Q'Q = I
# W½X β = W½y => R'Q' β = y
# => β = Q . [R⁻ᵀ y; 0]
qnrT = p.qr = qr(scratchm1')
RTinv = p.scratchR = inv(qnrT.R)'
@assert 1 <= n <= size(p.delbeta, 1)
mul!(view(p.delbeta, 1:n), RTinv, r)
p.delbeta = zeros(size(p.delbeta))
p.delbeta[1:n] .= RTinv * r
lmul!(qnrT.Q, p.delbeta)
end
return p
end


## Use DensePredQR from GLM
else
using GLM: DensePredQR
import GLM: qrpred
end


##########################################
###### [Dense/Sparse]PredCG
##########################################

"""
DensePredCG

Expand All @@ -109,20 +207,8 @@ mutable struct DensePredCG{T<:BlasReal} <: DensePred
scratchbeta::Vector{T}
scratchm1::Matrix{T}
scratchr1::Vector{T}
function DensePredCG{T}(X::Matrix{T}, beta0::Vector{T}) where {T}
n, p = size(X)
length(beta0) == p || throw(DimensionMismatch("length(β0) ≠ size(X,2)"))
return new{T}(
X,
beta0,
zeros(T, p),
zeros(T, (p, p)),
zeros(T, p),
zeros(T, (n, p)),
zeros(T, n),
)
end
function DensePredCG{T}(X::Matrix{T}) where {T}

function DensePredCG(X::Matrix{T}) where {T<:BlasReal}
n, p = size(X)
return new{T}(
X,
Expand All @@ -135,10 +221,8 @@ mutable struct DensePredCG{T<:BlasReal} <: DensePred
)
end
end
DensePredCG(X::Matrix, beta0::Vector) = DensePredCG{eltype(X)}(X, beta0)
DensePredCG(X::Matrix{T}) where {T} = DensePredCG{T}(X, zeros(T, size(X, 2)))
function Base.convert(::Type{DensePredCG{T}}, X::Matrix{T}) where {T}
return DensePredCG{T}(X, zeros(T, size(X, 2)))
return DensePredCG(X)
end

# Compatibility with cholpred(X, pivot)
Expand Down
3 changes: 3 additions & 0 deletions src/regularizedpred.jl
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,9 @@ function postupdate_λ!(r::RidgePred)
# Update the extended model matrix with the new value
GG = r.sqrtλ * r.G
@views r.pred.X[(n + 1):(n + m), :] .= GG

# Update other fields
# TODO: update DensePredQR
if isa(r.pred, DensePredChol)
# Recompute the cholesky decomposition
X = r.pred.X
Expand Down
Loading