Skip to content
This repository has been archived by the owner on Dec 8, 2021. It is now read-only.
Daniel Lee edited this page May 31, 2021 · 25 revisions

Wiki Home

Setup for Testing Datasource Plugins

The largest part of the work for reviewing a datasource plugin is setting up the datasource. This is a guide for setting up the different databases needed for testing.

Akumuli Datasource

There is a test server for akumuli at http://206.189.27.155:8181/ and this is the only setting (URL field) needed to create a datasource connection.

Ambari Datasource

There are a lot of steps (takes 30 minutes to install everything) and requires vagrant and virtualbox. Follow the instructions here.

I had to manually start the start the ambari services after they failed to start the first time when using the cluster wizard.

The url to login into the Ambari website is http://c6801.ambari.apache.org:8080 (where c68 is if you use centos 6.8) but the url for config in Grafana should be:

http://c6801.ambari.apache.org:6188 with basic auth and user admin and password `admin.

Atlas Datasource

To get Atlas running with some sample data (instructions from here):

curl -LO https://github.com/Netflix/atlas/releases/download/v1.5.3/atlas-1.5.3-standalone.jar
curl -Lo memory.conf https://raw.githubusercontent.com/Netflix/atlas/v1.5.x/conf/memory.conf
java -jar atlas-1.5.3-standalone.jar memory.conf

curl -Lo publish-test.sh https://raw.githubusercontent.com/Netflix/atlas/v1.5.x/scripts/publish-test.sh
chmod 755 publish-test.sh
./publish-test.sh

Cognite Data Platform Datasource

  • Sign up for an account for their publicdata. Follow the steps here: https://doc.cognitedata.com/quickstart
  • After creating the api key, then use: Project: publicdata and the api key created in the previous step.

Clickhouse data source

Option 1:

  • Use the docker image on DockerHub
  • Start the server: docker run -d --name test-clickhouse-server --ulimit nofile=262144:262144 yandex/clickhouse-server
  • Connect to it with the client: docker run -it --rm --link test-clickhouse-server:clickhouse-server yandex/clickhouse-client --host clickhouse-server
  • Create the database: CREATE DATABASE IF NOT EXISTS test
  • USE test
  • Create the table: CREATE TABLE test.timeseries (EventDate Date, EventTime DateTime, Name String, Value Int32) ENGINE = MergeTree() ORDER BY EventTime
  • Insert some data - vary the series name and value in this query: INSERT INTO test.timeseries(*) VALUES(now(), now(), 'test1', 10)
  • Query in Grafana: $columns( Name, sum(Value) c) FROM test.timeseries

Option 2:

  • Use the Clickhouse playground - credentials and url here: https://clickhouse.tech/docs/en/getting-started/playground/
  • Create query for the hits_100m_obfuscated table in the datasets database using the wizard in the query editor and select time range for the year 2013 (2013-06-29 to 2013-08-01)

Consul Datasource

  • Initial agent: docker run -d --name=dev-consul -e CONSUL_BIND_INTERFACE=eth0 consul
  • Add more agents with: docker run -d -e CONSUL_BIND_INTERFACE=eth0 consul agent -dev -join=172.17.0.2
  • Create a test key value (key: test3, value: 40): curl -X PUT -d @- http://172.17.0.2:8500/v1/kv/test3 <<< 40
  • Fill in a dummy value for the token on the Grafana config page.

Darksky Datasource

See the docs: https://grafana.com/plugins/andig-darksky-datasource

DeviceHive

  1. https://playground.devicehive.com/
  2. Sign up
  3. Create a device with curl (curl command is on playground)
  4. Copy the access token for the data source
  5. Use the admin console on playground to send commands. Name: test Parameters: {"test": 1} or {"test2": 1}

GLPI

Use the following docker-compose file:

glpi-md:
  image: mariadb
  restart: always
  ports:
    - "32806:3306"
  environment:
    MYSQL_DATABASE: glpi
    MYSQL_ROOT_PASSWORD: password
    MYSQL_USER: glpi
    MYSQL_PASSWORD: password
  volumes:
  - glpi-db:/var/lib/mysql
  - glpi-dblog:/var/log/mysql
  - glpi-dbetc:/etc/mysql

glpi:
  image: fjudith/glpi
  restart: always
  ports:
    - "32706:80"
  volumes:
    - glpi-files:/var/www/html/files
    - glpi-plugins:/var/www/html/plugins
  links:
    - glpi-md:mysql
  1. Then browse to http://localhost:32706 to start the installation wizard. Instructions for that here if you get stuck.

  2. The step where with 3 fields - database, user and password. Database should be localhost (or the IP address of the mariadb started with docker-compose e.g. 172.17.0.3). User: glpi Password: password

  3. Then login to the GLPI portal with user: glpi password: glpi

  4. The REST API needs to be enabled in Setup -> General section:

    image

  5. Need to enable an API client as well (the first time you need to check the regenerate checkbox for the token):

    image

  6. For the config page in Grafana, you will need the App token that is generated in the previous step and the client token can be generated in the Adminstration->Users section. Find the glpi user, then navigate to the Setting section. Find the API token field, check the regenerate checkbox and save:

    image

  7. Finally, I have only ever got this working using Access mode Browser and using a Cors plugin in Chrome to get around the CORS issues. Then create a ticket and it should show up in Grafana.

Instana

  1. cd data/plugins/instana-datasource
  2. docker-compose up mountebank
  3. Create datasource for Instana in Grafana with url: http://localhost:8010. For the API key, fill in the INSTANA_API_TOKEN value from the local.env file, currently the value is valid-api-token
  4. Create a new dashboard with a graph panel
  5. In the Query field, write filler and then select something from the dropdowns.

Logz.io

  1. Make sure you have an account that can create API tokens (not included in the free version).
  2. Create an API Key. Tools -> API Tokens.
  3. Upload some sample apache log data using :
    curl http://logzio-elk.s3.amazonaws.com/apache-daily-access.log --output apache-daily-access.log && curl -T apache-daily-access.log https://listener.logz.io:8022/file_upload/<ACCOUNT-TOKEN>/apache-access
    Get the account token from this page: https://app.logz.io/#/dashboard/data-sources/File-UploadcURL (you have to wait a minute or two before the uploaded data shows up)
  4. Use the API token to configure the datasource in Grafana. The index name and daily pattern fields don't seem to matter - they can be anything.

LinkSmart SensorThings Datasource

  1. Use the following docker-compose file to start a SensorThings server (the server implementation is called Gost) with a postgres db with GIS installed:

    https://raw.githubusercontent.com/gost/docker-compose/master/docker-compose.yml (From this repo)

  2. Test that it is working. The following command should return a json file with an empty array and not an error: curl http://localhost:8080/v1.0/Things

  3. Create some data using Postman. Gost has a collection of HTTP commands for Postman that you can use to create sensors, things and data. Import this collection into Postman and run some POST commands to create datapoints.

  4. Create a datasource in Grafana and set this value in the url field: http://localhost:8080/v1.0

Pagerduty Datasource

  1. Will need access to our internal Pagerduty account
  2. Create an API key at https://xxx.pagerduty.com/api_keys
  3. Use that key in the datasource config
  4. If you want to filter by service id, the service ids can be found in Pagerduty be looking at the url for a service. E.g. P8CXWJA is the service id for https://xxx.pagerduty.com/services/P8CXWJA

Prometheus Alert Manager Datasource

Grafana has a docker block for prometheus that includes everything needed to test this datasource.

In Grafana source root folder:

  • cd docker
  • ./create_docker_compose.sh prometheus
  • docker-compose up
  • create datasource in Grafana with url: http://127.0.0.1:9093
  • Fill in the severity level fields

Skydive Datasource

  1. Use docker compose with the Skydive docker compose file and docker-compose up
  2. Navigate to http://localhost:8082
  3. You should see one node - your machine. Expand to see all the network interfaces by clicking on the node and then using the expand button (bottom left of the diagram). Choose any interface and then on the right hand side, create a capture. Give the capture a name and choose an interface. After clicking the create button, you should get a query like G.V().Has('TID', '86adb4c4-0f05-56ee-6ea8-aa1578df14f6').
  4. Copy the query into the Skydive datasource in Grafana.

QuasarDB

QuasarDB runs in insecure mode which allows for anonymous login, and secure mode which requires a username and secret key.

Setting up

A complete environment can be build with docker using the following command.

docker build -t qdb-grafana-example-docker https://github.com/kontrarian/qdb-grafana-example-docker.git

The updated dist/ folder is included in the plugin git repository so it can be cloned directory to the grafana plugins directory to install it.

Testing Anonymous Login

docker run -it -p 40080:40080 qdb-grafana-example-docker

This will start the QuasarDB db server and rest server in the background, log you into bash and print the server url to the console.

In the plugin configuration set the URL to http://127.0.0.1:40080 and the Access to Server. Auth can be skipped and toggle off Use Secured Cluster under QuasarDB Details

Sample QuasarDB query

select avg(low), max(high) from btcusd in $__range group by $__interval

Testing Secure Login

docker run -it -p 40493:40493 --env QDB_SECURITY=true qdb-grafana-example-docker

This will start the QuasarDB db server and rest server in the background, log you into bash and print the server url and user credentials to the console.

In the plugin configuration set the URL to https://127.0.0.1:40493 and the Access to Server. Under Auth ensure Skip TLS Verify is checked as this demo uses self-signed TLS certificates. Under QuasarDB Details toggle on User Secured Cluster and enter the User name and User secret that were printed to the console when you ran the docker container.

TDEngine

  • docker run -p 6020:6020 tdengine/tdengine:latest
  • Url: http://localhost:6020
  • Don't need to add user or password

Thruk Datasource

Warp10

  • Start the docker container for Warp10: docker run --name warp10 -p 8080:8080 -p 8081:8081 -d -i warp10io/warp10:latest
  • To get tokens to read and write (from the Worf component): docker exec --user warp10 -t -i warp10 warp10-standalone.sh worf test 31536000000
  • It should return something like:
    {"read":{"token":"8rJ46zGxQkTLQsBu39SUUrANJmjHB__qJkHjDM8IsWsf8XAi6P03EI1e6ve5NqbzrC81uIwiB6S9JgI9bNtR2PEwD7qpNR9pYA4U29H3HiER37DNIOyvP.","tokenIdent":"2cfb976558c726f7","ttl":31536000000,"application":"test","applications":["test"],"owners":["932cd87c-bb00-4127-b75e-07fedbd12fa3"],"producer":"932cd87c-bb00-4127-b75e-07fedbd12fa3","producers":[]},"write":{"token":"UYWwdR4S6at_NpxlD_tsN99rAj5H_6yBZ5JhSJ5oTlaoJXmEYPMjPWQuD6Zs6ZENVaRacl2lgfSkI595gSETveyDQAaxPqzeAcQXfWBkKt7","tokenIdent":"f9211941b17d9b81","ttl":31536000000,"application":"test","owner":"932cd87c-bb00-4127-b75e-07fedbd12fa3","producer":"932cd87c-bb00-4127-b75e-07fedbd12fa3"}}
  • Create a file with test data (warp10.txt):
        1538250207762000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 79.16
    1538250237727000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 75.87
    1538250267504000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 74.46
    1538250267504000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 73.55
    1538250297664000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 72.30
    1538250327765000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 70.73
    1538250327765000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 69.50
    1538250357724000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 68.24
    1538250387792000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 66.66
    1538250387792000/51.501988:0.005953/ some.sensor.model.humidity{xbeeId=XBee_40670F0D,moteId=53,area=1} 65.73
  • Take the write token from the json result and use it to create test data:
    curl -H 'X-Warp10-Token: your_write_token' --data-binary @~/warp10.txt 'http://localhost:8080/api/v0/update'
  • Use the read token in the Warp10 query editor.
  • Example raw query for Worldmap:
    '[ { "key": "amsterdam", "latitude": 52.3702, "longitude": 4.8952, "name": "Amsterdam", "value": 9 }, { "key": "charleroi", "latitude": 50.4108, "longitude": 4.4446, "name": "Charleroi", "value": 6 }, { "key": "frankfurt", "latitude": 50.110924, "longitude": 8.682127, "name": "Frankfurt", "value": 9 }, { "key": "london", "latitude": 51.503399, "longitude": -0.119519, "name": "London", "value": 12 }, { "key": "paris", "latitude": 48.864716, "longitude": 2.349014, "name": "Paris", "value": 15 } ]'
    JSON->
    
  • Example query for test data file:
    • Metric name: some.sensor.model.humidity
    • Label key: moteId
    • Label value: 53