-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add constructor for Linearised Nedelec space on non-conforming mesh
- Loading branch information
Showing
2 changed files
with
246 additions
and
198 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,100 +1,121 @@ | ||
function _create_ref_rule(Dc,ranks::MPIArray, num_uniform_refs) | ||
if Dc==2 | ||
coarse_model=CartesianDiscreteModel((0,1,0,1),(1,1)) | ||
else | ||
@assert Dc==3 | ||
coarse_model=CartesianDiscreteModel((0,1,0,1,0,1),(1,1,1)) | ||
end | ||
new_comm=MPI.Comm_split(ranks.comm,MPI.Comm_rank(ranks.comm),0) | ||
new_ranks=MPIArray(1,new_comm,(1,)) | ||
model_ref=OctreeDistributedDiscreteModel(new_ranks,coarse_model,num_uniform_refs) | ||
ref_rules=map(local_views(model_ref.dmodel)) do model | ||
Gridap.Adaptivity.RefinementRule(Gridap.Adaptivity.GenericRefinement(), | ||
Dc==2 ? QUAD : HEX, | ||
get_grid(model)) | ||
end | ||
ref_rules.item_ref[] | ||
end | ||
|
||
function _get_order(reffe::Tuple{<:Lagrangian,Any,Any}) | ||
reffe[2][2] | ||
function _create_ref_rule(Dc, ranks::MPIArray, num_uniform_refs) | ||
if Dc == 2 | ||
coarse_model = CartesianDiscreteModel((0, 1, 0, 1), (1, 1)) | ||
else | ||
@assert Dc == 3 | ||
coarse_model = CartesianDiscreteModel((0, 1, 0, 1, 0, 1), (1, 1, 1)) | ||
end | ||
new_comm = MPI.Comm_split(ranks.comm, MPI.Comm_rank(ranks.comm), 0) | ||
new_ranks = MPIArray(1, new_comm, (1,)) | ||
model_ref = OctreeDistributedDiscreteModel(new_ranks, coarse_model, num_uniform_refs) | ||
ref_rules = map(local_views(model_ref.dmodel)) do model | ||
Gridap.Adaptivity.RefinementRule(Gridap.Adaptivity.GenericRefinement(), | ||
Dc == 2 ? QUAD : HEX, | ||
get_grid(model)) | ||
end | ||
ref_rules.item_ref[] | ||
end | ||
|
||
function _create_adaptivity_glue(model::OctreeDistributedDiscreteModel{Dc}, | ||
ref_model::OctreeDistributedDiscreteModel{Dc}, | ||
num_uniform_refinements) where {Dc} | ||
ref_rule=_create_ref_rule(Dc,model.parts,num_uniform_refinements) | ||
num_children=Gridap.Adaptivity.num_subcells(ref_rule) | ||
cell_gids_model = get_cell_gids(model.dmodel) | ||
cell_gids_ref_model = get_cell_gids(ref_model.dmodel) | ||
ref_model::OctreeDistributedDiscreteModel{Dc}, | ||
num_uniform_refinements) where {Dc} | ||
ref_rule = _create_ref_rule(Dc, model.parts, num_uniform_refinements) | ||
num_children = Gridap.Adaptivity.num_subcells(ref_rule) | ||
cell_gids_model = get_cell_gids(model.dmodel) | ||
cell_gids_ref_model = get_cell_gids(ref_model.dmodel) | ||
|
||
n2o_cell_map,n2o_cell_to_child_id=map(partition(cell_gids_model),partition(cell_gids_ref_model)) do model_partition, ref_model_partition | ||
num_local_cells_model=local_length(model_partition) | ||
num_owned_cells_model=own_length(model_partition) | ||
num_local_cells_ref_model=local_length(ref_model_partition) | ||
n2o_cell_map=Vector{Int}(undef,num_local_cells_ref_model) | ||
n2o_cell_to_child_id=Vector{Int}(undef,num_local_cells_ref_model) | ||
current=1 | ||
for i=1:num_owned_cells_model | ||
for j=1:num_children | ||
n2o_cell_map[current]=i | ||
n2o_cell_to_child_id[current]=j | ||
current+=1 | ||
end | ||
end | ||
n2o_cell_map,n2o_cell_to_child_id | ||
end |> tuple_of_arrays | ||
n2o_cell_map, n2o_cell_to_child_id = map(partition(cell_gids_model), partition(cell_gids_ref_model)) do model_partition, ref_model_partition | ||
num_local_cells_model = local_length(model_partition) | ||
num_owned_cells_model = own_length(model_partition) | ||
num_local_cells_ref_model = local_length(ref_model_partition) | ||
n2o_cell_map = Vector{Int}(undef, num_local_cells_ref_model) | ||
n2o_cell_to_child_id = Vector{Int}(undef, num_local_cells_ref_model) | ||
current = 1 | ||
for i = 1:num_owned_cells_model | ||
for j = 1:num_children | ||
n2o_cell_map[current] = i | ||
n2o_cell_to_child_id[current] = j | ||
current += 1 | ||
end | ||
end | ||
n2o_cell_map, n2o_cell_to_child_id | ||
end |> tuple_of_arrays | ||
|
||
cache = fetch_vector_ghost_values_cache(n2o_cell_map,partition(cell_gids_ref_model)) | ||
fetch_vector_ghost_values!(n2o_cell_map,cache) |> wait | ||
fetch_vector_ghost_values!(n2o_cell_to_child_id,cache) |> wait | ||
cache = fetch_vector_ghost_values_cache(n2o_cell_map, partition(cell_gids_ref_model)) | ||
fetch_vector_ghost_values!(n2o_cell_map, cache) |> wait | ||
fetch_vector_ghost_values!(n2o_cell_to_child_id, cache) |> wait | ||
|
||
adaptivity_glue=map(n2o_cell_map,n2o_cell_to_child_id) do n2o_cell_map, n2o_cell_to_child_id | ||
n2o_faces_map = [(d==Dc) ? n2o_cell_map : Int[] for d in 0:Dc] | ||
AdaptivityGlue(n2o_faces_map,n2o_cell_to_child_id,ref_rule) | ||
end | ||
end | ||
adaptivity_glue = map(n2o_cell_map, n2o_cell_to_child_id) do n2o_cell_map, n2o_cell_to_child_id | ||
n2o_faces_map = [(d == Dc) ? n2o_cell_map : Int[] for d in 0:Dc] | ||
AdaptivityGlue(n2o_faces_map, n2o_cell_to_child_id, ref_rule) | ||
end | ||
end | ||
|
||
function _setup_one_level_refined_octree_model(model::OctreeDistributedDiscreteModel{Dc,Dp}, | ||
fmodel::OctreeDistributedDiscreteModel{Dc,Dp}, | ||
adaptivity_glue) where {Dc,Dp} | ||
@assert model.parts === fmodel.parts | ||
adaptive_models = map(local_views(model), | ||
local_views(fmodel), | ||
adaptivity_glue) do model, fmodel, glue | ||
Gridap.Adaptivity.AdaptedDiscreteModel(fmodel.model,model,glue) | ||
fmodel::OctreeDistributedDiscreteModel{Dc,Dp}, | ||
adaptivity_glue) where {Dc,Dp} | ||
@assert model.parts === fmodel.parts | ||
adaptive_models = map(local_views(model), | ||
local_views(fmodel), | ||
adaptivity_glue) do model, fmodel, glue | ||
Gridap.Adaptivity.AdaptedDiscreteModel(fmodel.model, model, glue) | ||
end | ||
new_fmodel = GridapDistributed.GenericDistributedDiscreteModel(adaptive_models, get_cell_gids(fmodel)) | ||
OctreeDistributedDiscreteModel(Dc, Dp, | ||
model.parts, | ||
new_fmodel, | ||
fmodel.non_conforming_glue, | ||
model.coarse_model, | ||
model.ptr_pXest_connectivity, | ||
pXest_copy(fmodel.pXest_type, fmodel.ptr_pXest), | ||
fmodel.pXest_type, | ||
fmodel.pXest_refinement_rule_type, | ||
false, | ||
fmodel) | ||
end | ||
|
||
function Gridap.LinearizedFESpace(model::OctreeDistributedDiscreteModel{Dc}, | ||
reffe::Tuple{Gridap.ReferenceFEs.Lagrangian,Any,Any}; | ||
kwargs...) where {Dc} | ||
lin_reffe = Gridap._linearize_reffe(reffe) | ||
order = reffe[2][2] | ||
@assert floor(log2(order)) == ceil(log2(order)) "The order of the Lagrangian reference FE must be a power of 2" | ||
num_refinements = Int(log2(order)) | ||
ref_model = model | ||
for i = 1:num_refinements | ||
cell_gids = get_cell_gids(ref_model.dmodel) | ||
ref_coarse_flags = map(partition(cell_gids)) do indices | ||
flags = Vector{Cint}(undef, local_length(indices)) | ||
flags .= refine_flag | ||
end | ||
new_fmodel = GridapDistributed.GenericDistributedDiscreteModel(adaptive_models,get_cell_gids(fmodel)) | ||
OctreeDistributedDiscreteModel(Dc,Dp, | ||
model.parts, | ||
new_fmodel, | ||
fmodel.non_conforming_glue, | ||
model.coarse_model, | ||
model.ptr_pXest_connectivity, | ||
pXest_copy(fmodel.pXest_type,fmodel.ptr_pXest), | ||
fmodel.pXest_type, | ||
fmodel.pXest_refinement_rule_type, | ||
false, | ||
fmodel) | ||
end | ||
ref_model, glue = Gridap.Adaptivity.adapt(ref_model, ref_coarse_flags) | ||
end | ||
adaptivity_glue = _create_adaptivity_glue(model, ref_model, num_refinements) | ||
one_level_ref_model = _setup_one_level_refined_octree_model(model, ref_model, adaptivity_glue) | ||
Gridap.FESpace(one_level_ref_model, lin_reffe; kwargs...), one_level_ref_model | ||
end | ||
|
||
function Gridap.LinearizedFESpace(model::OctreeDistributedDiscreteModel{Dc}, | ||
reffe::Tuple{Gridap.ReferenceFEs.Lagrangian,Any,Any}; | ||
kwargs...) where {Dc} | ||
lin_reffe=Gridap._linearize_reffe(reffe) | ||
order=_get_order(reffe) | ||
@assert floor(log2(order)) == ceil(log2(order)) "The order of the Lagrangian reference FE must be a power of 2" | ||
num_refinements=Int(log2(order)) | ||
ref_model=model | ||
for i=1:num_refinements | ||
cell_gids=get_cell_gids(ref_model.dmodel) | ||
ref_coarse_flags=map(partition(cell_gids)) do indices | ||
flags=Vector{Cint}(undef,local_length(indices)) | ||
flags.=refine_flag | ||
end | ||
ref_model,glue=Gridap.Adaptivity.adapt(ref_model,ref_coarse_flags) | ||
function Gridap.LinearizedFESpace(model::OctreeDistributedDiscreteModel{Dc}, | ||
reffe::Tuple{Gridap.ReferenceFEs.Nedelec,Any,Any}; | ||
kwargs...) where {Dc} | ||
lin_reffe = (reffe[1], (reffe[2][1], 0), reffe[3]) | ||
order = reffe[2][2] + 1 | ||
@assert floor(log2(order)) == ceil(log2(order)) "The order of the Nedelec reference FE plus one must be a power of 2" | ||
_build_linearized_space(model, lin_reffe, order; kwargs...) | ||
end | ||
|
||
function _build_linearized_space(model, lin_reffe, order; kwargs...) | ||
num_refinements = Int(log2(order)) | ||
ref_model = model | ||
for _ in 1:num_refinements | ||
cell_gids = get_cell_gids(ref_model.dmodel) | ||
ref_coarse_flags = map(partition(cell_gids)) do indices | ||
flags = Vector{Cint}(undef, local_length(indices)) | ||
flags .= refine_flag | ||
end | ||
adaptivity_glue=_create_adaptivity_glue(model,ref_model,num_refinements) | ||
one_level_ref_model=_setup_one_level_refined_octree_model(model,ref_model,adaptivity_glue) | ||
Gridap.FESpace(one_level_ref_model,lin_reffe; kwargs...), one_level_ref_model | ||
end | ||
ref_model, _ = Gridap.Adaptivity.adapt(ref_model, ref_coarse_flags) | ||
end | ||
adaptivity_glue = _create_adaptivity_glue(model, ref_model, num_refinements) | ||
one_level_ref_model = _setup_one_level_refined_octree_model(model, ref_model, adaptivity_glue) | ||
Gridap.FESpace(one_level_ref_model, lin_reffe; kwargs...), one_level_ref_model | ||
end |
Oops, something went wrong.