A PyTorch implementation of "Implicit Neural Representations with Periodic Activation Functions" by Sitzmann et al.
Paper
❯ python img_train.py -h
usage: siren trainer for images [-h] [-d DEVICE] [--experiment_name EXPERIMENT_NAME] [-lr LR] [-e EPOCHS]
[-i IMG_HEIGHT] [-n N_LAYERS] [-s HIDDEN_SIZE]
img_path
positional arguments:
img_path path to training image
options:
-h, --help show this help message and exit
-d DEVICE, --device DEVICE
device to train on
--experiment_name EXPERIMENT_NAME
experiment name
-lr LR, --lr LR learning rate
-e EPOCHS, --epochs EPOCHS
training epochs
-i IMG_HEIGHT, --img_height IMG_HEIGHT
image height for train resize
-n N_LAYERS, --n_layers N_LAYERS
number of layers
-s HIDDEN_SIZE, --hidden_size HIDDEN_SIZE
hidden layer size
Results after training for 10k epochs on images/toronto.jpg
with a resolution of 1080p.
Ground truth | Model generated |
---|---|
![]() |
![]() |