Skip to content

gysennn/fire_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv8 Streamlit APP

Introduction

This repository supply a user-friendly interactive interface for YOLOv8 and the interface is powered by Streamlit. It could serve as a resource for future reference while working on your own projects.

Features

  • Feature1: Object detection task.
  • Feature2: Multiple detection models. yolov8n, yolov8s, yolov8m, yolov8l, yolov8x
  • Feature3: Multiple input formats. Image, Video, Webcam

Interactive Interface

Image Input Interface

image_input_demo

Video Input Interface

video_input_demo

Webcam Input Interface

webcam_input_demo

Installation

Create a new conda environment

# create
conda create -n yolov8-streamlit python=3.8 -y

# activate
conda activate yolov8-streamlit

get the pro

Install packages

# yolov8 dependencies
pip install ultralytics

# Streamlit dependencies
pip install streamlit

Download Pre-trained YOLOv8 Detection Weights

Create a directory named weights and create a subdirectory named detection and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below.

Model size
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

Run

streamlit run app.py

Then will start the Streamlit server and open your web browser to the default Streamlit page automatically.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages