Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection (MemAE)
** This repo. is not official and not perfectly implemented. **
You can see the paper in https://arxiv.org/pdf/1904.02639.pdf.
It is partly implemented since it is a small part of my current project.
- Python 3.6.4
- Pytorch >= 1.0.0
- tensorboardX >= 1.6
- tqdm >= 1.6
To train the model,
python main.py \
--train
--num-istances [INT] \
--num-classes [INT] \
--num-memories [INT] \
--addressing ['soft', 'sparse'] \
--log-dir=$DIR
You can see other configuration in 'main.py'.
python main.py --visualize --ckpt [TRAINED_MODEL]
python main.py --test --ckpt [TRAINED_MODEL]