Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update deprecated syntax for future rstan compatibility #20

Merged
merged 1 commit into from
Sep 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ Depends:
bayesplot,
R (>= 3.4.0),
Rcpp (>= 0.12.9),
rstan (>= 2.18.1)
rstan (>= 2.26.0)
Imports:
coda,
dplyr,
Expand All @@ -39,8 +39,8 @@ Imports:
rlang,
rstantools (>= 2.0.0)
LinkingTo:
StanHeaders (>= 2.18.0),
rstan (>= 2.18.1),
StanHeaders (>= 2.26.0),
rstan (>= 2.26.0),
BH (>= 1.66.0),
Rcpp (>= 0.12.9),
RcppArmadillo,
Expand Down
2 changes: 1 addition & 1 deletion inst/stan/rw1_model.stan
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ transformed data {
}

parameters {
real<lower=0> sigma_b[k];
array[k] real<lower=0> sigma_b;
real<lower=0> sigma_y;
}

Expand Down
2 changes: 1 addition & 1 deletion inst/stan/rw1_model_naive.stan
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ transformed data {
}

parameters {
real<lower=0> sigma_b[k];
array[k] real<lower=0> sigma_b;
real<lower=0> sigma_y;
matrix[k, n] beta_raw;
}
Expand Down
20 changes: 10 additions & 10 deletions inst/stan/walker_glm.stan
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@ functions {
// univariate Kalman filter & smoother for non-gaussian model,
// returns the log-likelihood of the corresponding approximating Gaussian model
// and a extra correction term
matrix glm_approx_loglik(vector y, int[] y_miss, vector a1, matrix P1, vector Ht,
matrix Tt, matrix Rt, matrix xreg, int distribution, int[] u,
matrix glm_approx_loglik(vector y, array[] int y_miss, vector a1, matrix P1, vector Ht,
matrix Tt, matrix Rt, matrix xreg, int distribution, array[] int u,
vector y_original, vector xbeta_fixed) {

int k = rows(xreg);
Expand Down Expand Up @@ -99,7 +99,7 @@ functions {
// univariate Kalman filter & smoother for non-gaussian model,
// returns the log-likelihood of the corresponding approximating Gaussian model
// and a extra correction term
matrix glm_approx_smoother(vector y, int[] y_miss, vector a1, matrix P1, vector Ht,
matrix glm_approx_smoother(vector y, array[] int y_miss, vector a1, matrix P1, vector Ht,
matrix Tt, matrix Rt, matrix xreg) {

int k = rows(xreg);
Expand Down Expand Up @@ -171,7 +171,7 @@ data {
matrix[n, k_fixed] xreg_fixed;
matrix[k, n] xreg_rw;
vector[n] y;
int<lower=0> y_miss[n];
array[n] int<lower=0> y_miss;

real beta_fixed_mean;
real<lower=0> beta_fixed_sd;
Expand All @@ -190,7 +190,7 @@ data {

vector[n] Ht;
vector[n] y_original;
int<lower=0> u[n];
array[n] int<lower=0> u;
int distribution;
int<lower=0> N;
matrix[k_rw1, n] gamma_rw1;
Expand All @@ -199,7 +199,7 @@ data {

transformed data {
// indexing for non-missing observations for log_lik
int obs_idx[n_lfo - sum(y_miss[1:n_lfo])];
array[n_lfo - sum(y_miss[1:n_lfo])] int obs_idx;
vector[m] a1;
matrix[m, m] P1 = rep_matrix(0.0, m, m);
matrix[m, m] Tt = diag_matrix(rep_vector(1.0, m));
Expand Down Expand Up @@ -233,8 +233,8 @@ transformed data {

parameters {
vector[k_fixed] beta_fixed;
real<lower=0> sigma_rw1[k_rw1];
real<lower=0> sigma_rw2[k_rw2];
array[k_rw1] real<lower=0> sigma_rw1;
array[k_rw2] real<lower=0> sigma_rw2;
}

transformed parameters {
Expand Down Expand Up @@ -290,8 +290,8 @@ generated quantities{
vector[n] y_rep_j;
matrix[k, n] beta_j;
matrix[k_rw2, n] nu_j;
real beta_array[k, n, N];
real nu_array[k_rw2, n, N];
array[k, n, N] real beta_array;
array[k_rw2, n, N] real nu_array;
vector[N] w = rep_vector(0.0, N); //importance sampling weights

// This is the simplest but not the most efficient way to sample multiple realizations
Expand Down
12 changes: 6 additions & 6 deletions inst/stan/walker_lm.stan
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ functions {
// note that these functions are not fully optimised yet

// univariate Kalman filter for RW1+RW2 model, returns the log-likelihood
vector gaussian_filter(vector y, int[] y_miss, vector a1, matrix P1, real Ht,
vector gaussian_filter(vector y, array[] int y_miss, vector a1, matrix P1, real Ht,
matrix Tt, matrix Rt, matrix xreg, vector gamma2_y) {

int k = rows(xreg);
Expand Down Expand Up @@ -40,7 +40,7 @@ functions {

}

matrix gaussian_smoother(vector y, int[] y_miss, vector a1, matrix P1, real Ht,
matrix gaussian_smoother(vector y, array[] int y_miss, vector a1, matrix P1, real Ht,
matrix Tt, matrix Rt, matrix xreg,vector gamma2_y) {

int k = rows(xreg);
Expand Down Expand Up @@ -111,7 +111,7 @@ data {
matrix[n, k_fixed] xreg_fixed;
matrix[k, n] xreg_rw;
vector[n] y;
int<lower=0> y_miss[n];
array[n] int<lower=0> y_miss;
real<lower=0> sigma_y_shape;
real<lower=0> sigma_y_rate;

Expand All @@ -136,7 +136,7 @@ data {

transformed data {
// indexing for non-missing observations for log_lik
int obs_idx[n_lfo - sum(y_miss[1:n_lfo])];
array[n_lfo - sum(y_miss[1:n_lfo])] int obs_idx;
vector[m] a1;
matrix[m, m] P1 = rep_matrix(0.0, m, m);
matrix[m, m] Tt = diag_matrix(rep_vector(1.0, m));
Expand Down Expand Up @@ -170,8 +170,8 @@ transformed data {

parameters {
vector[k_fixed] beta_fixed;
real<lower=0> sigma_rw1[k_rw1];
real<lower=0> sigma_rw2[k_rw2];
array[k_rw1] real<lower=0> sigma_rw1;
array[k_rw2] real<lower=0> sigma_rw2;
real<lower=0> sigma_y;
}

Expand Down
Loading