Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HILTTI-2022数据集求指教 #43

Open
keleeven opened this issue Oct 30, 2024 · 6 comments
Open

HILTTI-2022数据集求指教 #43

keleeven opened this issue Oct 30, 2024 · 6 comments

Comments

@keleeven
Copy link

您好,最近在利用fast livo调试HILTTI-2022的数据集,激光里程计已经可以成功运行,但是结合相机这块一直调试有问题,无法正常跟踪特征点,以下是我配置的参数表,麻烦郑博可以点拨一二,感谢!!!
feature_extract_enable : 0
point_filter_num : 1
max_iteration : 10
debug: 1
dense_map_enable : 1
filter_size_surf : 0.05
filter_size_map : 0.1
cube_side_length : 20
grid_size : 40
patch_size : 8
img_enable : 1
lidar_enable : 1
outlier_threshold : 300 # 78 100 156
ncc_en: true
ncc_thre: 100
img_point_cov : 100 # 1000
laser_point_cov : 0.001 # 0.001
delta_time: 0.0

common:
lid_topic: "/hesai/pandar"
imu_topic: "/alphasense/imu"

preprocess:
lidar_type: 4 # 1:Livox Avia LiDAR 2:VELO16 3:OUST64 4:XT32
scan_line: 32 # 16 64 32
blind: 1 # blind x m disable

mapping:
acc_cov_scale: 100
gyr_cov_scale: 10000
extrinsic_T: [-0.001, -0.00855, 0.055] # horizon 0.05512, 0.02226, -0.0297
extrinsic_R: [ 0, -1, 0,
-1, 0, 0,
0, 0, -1]

pcd_save:
pcd_save_en: true

camera:
img_topic: /alphasense/cam0/image_raw
Rcl: [0,0,-1,
0,-1,0,
-1,0,0]
Pcl: [-0.052, -0.053, 0.068]

@xuankuzcr
Copy link
Member

你用的外参Rcl和Pcl看起来不对,试试这个
Rcl: [ -0.999926, -0.00670802, 0.0101073,
-0.0100912, -0.00242564, -0.999946,
0.00673218, -0.999975, 0.00235777]
Pcl: [-0.0549762, 0.0675401, -0.0520599]

@keleeven
Copy link
Author

你用的外参Rcl和Pcl看起来不对,试试这个 Rcl: [ -0.999926, -0.00670802, 0.0101073, -0.0100912, -0.00242564, -0.999946, 0.00673218, -0.999975, 0.00235777] Pcl: [-0.0549762, 0.0675401, -0.0520599]

谢谢郑博的回复,试了您的参数配置后,就可以正常跟踪视觉点了,我跑的是exp10_cupola_2.bag这个数据集,但是每次在上楼梯这段狭窄空间的时候,位姿就会发生严重飘逸,并且单独跑LIO也会存在一样的问题,但是看作者的FAST-LIVO2论文实验部分,FAST-LIO2和FAST-LIVO都是很小的姿态误差,所以不太清楚是哪里存在问题,希望郑博可以指点一二,感激!!以下是我FAST-LIVO和FAT-LIO2的参数配置

FAST-LIVO:
feature_extract_enable : 0
point_filter_num : 1
max_iteration : 10
debug: 1
dense_map_enable : 0
filter_size_surf : 0.05
filter_size_map : 0.1
cube_side_length : 20
grid_size : 40
patch_size : 8
img_enable : 1
lidar_enable : 1
outlier_threshold : 300 # 78 100 156
ncc_en: false
ncc_thre: 0
img_point_cov : 100 # 1000
laser_point_cov : 0.001 # 0.001
delta_time: -0.05

common:
lid_topic: "/hesai/pandar"
imu_topic: "/alphasense/imu"

preprocess:
lidar_type: 4 # 1:Livox Avia LiDAR 2:VELO16 3:OUST64 4:XT32
scan_line: 32 # 16 64 32
blind: 0.5 # blind x m disable

mapping:
acc_cov_scale: 100
gyr_cov_scale: 10000
extrinsic_T: [-0.001, -0.00855, 0.055]
extrinsic_R: [1.11022302e-16, -1.00000000e+00, 0.00000000e+00,
-1.00000000e+00, 1.11022302e-16, -0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -1.00000000e+00]

pcd_save:
pcd_save_en: true

camera:
img_topic: /alphasense/cam0/image_raw
Rcl: [ -0.999926, -0.00670802, 0.0101073,
-0.0100912, -0.00242564, -0.999946,
0.00673218, -0.999975, 0.00235777]
Pcl: [-0.0549762, 0.0675401, -0.0520599]

FAST-LIO2:
common:
lid_topic: "/hesai/pandar"
imu_topic: "/alphasense/imu"
time_sync_en: false # ONLY turn on when external time synchronization is really not possible
time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
# This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0

preprocess:
lidar_type: 3 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
scan_line: 32
timestamp_unit: 3 # 0-second, 1-milisecond, 2-microsecond, 3-nanosecond.
blind: 1

mapping:
acc_cov: 0.1
gyr_cov: 0.1
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
fov_degree: 360
det_range: 150.0
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic
extrinsic_T: [-0.001, -0.00855, 0.055]
extrinsic_R: [1.11022302e-16, -1.00000000e+00, 0.00000000e+00,
-1.00000000e+00, 1.11022302e-16, -0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -1.00000000e+00]

publish:
path_en: true
scan_publish_en: true # false: close all the point cloud output
dense_publish_en: false # false: low down the points number in a global-frame point clouds scan.
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame

pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.

@keleeven
Copy link
Author

keleeven commented Nov 1, 2024

尝试了较多的方法,给激光点云建立噪声模型,加上BALM,修改IMU噪声,但无一例外,运行exp10_cupola_2.bag都在上楼梯这段发生了里程计的严重漂移,无论是FAST-LIO2,还是FAST-LIVO,希望郑博抽空可以指点迷津,感激不尽!!!

@xuankuzcr
Copy link
Member

Exp10 Cupola 2这个数据不在Hilti2022的榜单上,livo2论文里只测了打榜需要的sequence。我下载下来看看。

@xuankuzcr
Copy link
Member

xuankuzcr commented Nov 4, 2024

我刚测了下exp10_cupola_2.bag,lio2我也跑不下来,但livo2可以跑下来。只是顶楼的地面稍微有点厚,但可以接受。livo2里面的LiDAR部分修改自voxel map,参数可以给你参考下。ps: 上下楼梯时很狭窄,voxel_size要设小一点,要不然平面会误判。

  max_iterations: 10
  voxel_map_en: true
  pub_plane_en: false
  dept_err: 0.001 
  beam_err: 0.01
  min_eigen_value: 0.005
  sigma_num: 3
  voxel_size: 0.1 
  max_layer: 2
  max_points_num: 150
  layer_init_num: [5, 5, 5, 5, 5]

rviz_screenshot_2024_11_04-18_38_07

@keleeven
Copy link
Author

keleeven commented Nov 4, 2024

收到!!!谢谢郑博抽出时间调试,并感谢细节上的指点,我去尝试一下。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants