-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
209 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
from __future__ import print_function | ||
from __future__ import division | ||
|
||
import nibabel as nib | ||
import numpy as np | ||
|
||
|
||
def compute_variance_of_cluster(clusters, cluster_index, coords): | ||
filtered = coords[clusters == cluster_index] | ||
return ((filtered - filtered.mean(axis=0)) ** 2).sum(axis=1).mean(axis=0) | ||
|
||
|
||
def plot_least_varying(plt, clusters, coords, left, right): | ||
n_clusters = np.max(clusters) + 1 | ||
variances = [compute_variance_of_cluster(clusters, k, coords) for k in range(n_clusters)] | ||
order = np.argsort(variances) | ||
fig = plt.figure(figsize=(6, 6)) | ||
ax = fig.gca(projection='3d') | ||
for k in range(left, right): | ||
print(variances[order[k]]) | ||
index = (clusters == order[k]) | ||
filtered = coords[index] | ||
ax.scatter(filtered[:, 0], filtered[:, 1], filtered[:, 2], s=5, alpha=0.1) | ||
|
||
|
||
def plot_most_important(plt, clusters, importance, coords, left, right, mode='absolute'): | ||
a = np.array(importance).copy() | ||
if mode == 'relative': | ||
a = np.array(importance).copy() | ||
n_clusters = np.max(clusters) | ||
for j in range(n_clusters): | ||
cnt = np.sum(clusters == j) | ||
a[j] /= (cnt + 1e-4) | ||
|
||
order = np.argsort(-a) | ||
fig = plt.figure(figsize=(6, 6)) | ||
ax = fig.gca(projection='3d') | ||
for k in range(left, right): | ||
print(a[order[k]]) | ||
index = (clusters == order[k]) | ||
filtered = coords[index] | ||
ax.scatter(filtered[:, 0], filtered[:, 1], filtered[:, 2], s=5, alpha=0.1) | ||
|
||
|
||
def plot_biggest(plt, clusters, coords, left, right): | ||
n_clusters = np.max(clusters) + 1 | ||
cnt = [0] * n_clusters | ||
for j in range(n_clusters): | ||
cnt[j] = np.sum(clusters == j) | ||
order = np.argsort(-np.array(cnt)) | ||
fig = plt.figure(figsize=(6, 6)) | ||
ax = fig.gca(projection='3d') | ||
for k in range(left, right): | ||
print(cnt[order[k]]) | ||
index = (clusters == order[k]) | ||
filtered = coords[index] | ||
ax.scatter(filtered[:, 0], filtered[:, 1], filtered[:, 2], s=5, alpha=0.1) | ||
|
||
|
||
def plot_clusters_probabilistic(plotting, prob_clusters, coords, source_img): | ||
""" Plot probabilistic atlas. | ||
:param plotting: nilearn.plotting | ||
:param prob_clusters: (n_clusters, n_voxels) | ||
:param coords: (n_voxels, 3) | ||
:return: | ||
""" | ||
X, Y, Z, T = source_img.shape | ||
a = np.zeros((X, Y, Z)) | ||
for j in range(prob_clusters.shape[0]): | ||
for i in range(prob_clusters.shape[1]): | ||
x = int(coords[i, 0]) | ||
y = int(coords[i, 1]) | ||
z = int(coords[i, 2]) | ||
a[x, y, z, j] = prob_clusters[j, i] | ||
atlas = nib.Nifti1Image(a, affine=source_img.affine) | ||
plotting.plot_prob_atlas(atlas, bg_img=False) | ||
|
||
|
||
def plot_clusters(plotting, clusters, coords, source_img, output_file=None, figure=None): | ||
""" Plot probabilistic atlas. | ||
:param plotting: nilearn.plotting | ||
:param clusters: (n_voxels,) | ||
:param coords: (n_voxels, 3) | ||
:param output_file: if given the plot is saved here | ||
:param figure: figure param to be passed to plotting.plot_roi function | ||
:return: | ||
""" | ||
X, Y, Z, T = source_img.shape | ||
a = np.zeros((X, Y, Z)) | ||
for i in range(clusters.shape[0]): | ||
x = int(coords[i, 0]) | ||
y = int(coords[i, 1]) | ||
z = int(coords[i, 2]) | ||
a[x, y, z] = clusters[i] | ||
img = nib.Nifti1Image(a, affine=source_img.affine) | ||
return plotting.plot_roi(img, output_file=output_file, figure=figure) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters