Yuxuan Zhang1,*, Tianheng Cheng1,*, Lei Liu2, Heng Liu2, Longjin Ran2, Xiaoxin Chen2, Wenyu Liu1, Xinggang Wang1,π§
1 Huazhong University of Science and Technology, 2 vivo AI Lab
(* equal contribution, π§ corresponding author)
- 2025.1: Preview! the EVF-SAM v2 is on the way, going to support salient object segmentation, salient object matte, and referring matte! Besides, better performance on original capabilities is developed!
- 2024.9: We have expanded our EVF-SAM to powerful SAM-2. Besides fewer parameters and improvements on image prediction, our new model also performs well on video prediction (powered by SAM-2). Only at the expense of a simple image training process on RES datasets, we find our EVF-SAM has zero-shot video text-prompted capability. Try our code!
- EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.
- EVF-SAM is designed for efficient computation, enabling rapid inference in few seconds per image on a T4 GPU.
- Release code
- Release weights
- Release demo π π€ evf-sam
- Release code and weights based on SAM-2
- Update demo supporting SAM-2π π€ evf-sam2
- release new checkpoint supporting body part segmentation and semantic level segmentation.
- update demo supporting multitask
Input text | Input image | Output |
"zebra top left" | ||
"a pizza with a yellow sign on top of it" | ||
"the broccoli closest to the ketchup bottle" | ||
"[semantic] hair" | ||
"[semantic] sea" |
- Clone this repository
- Install pytorch for your cuda version. Note that torch>=2.0.0 is needed if you are to use SAM-2, and torch>=2.2 is needed if you want to enable flash-attention. (We use torch==2.0.1 with CUDA 11.7 and it works fine.)
- pip install -r requirements.txt
- If you are to use the video prediction function, run:
cd model/segment_anything_2
python setup.py build_ext --inplace
Name | SAM | BEIT-3 | Params | Prompt Encoder & Mask Decoder | Reference Score |
EVF-SAM-multitask | SAM-H | BEIT-3-L | 1.32B | train | 84.2 |
EVF-SAM2-multitask | SAM-2-L | BEIT-3-L | 898M | freeze | 83.2 |
EVF-SAM | SAM-H | BEIT-3-L | 1.32B | train | 83.7 |
EVF-SAM2 | SAM-2-L | BEIT-3-L | 898M | freeze | 83.6 |
EVF-Effi-SAM-L | EfficientSAM-S | BEIT-3-L | 700M | train | 83.5 |
EVF-Effi-SAM-B | EfficientSAM-T | BEIT-3-B | 232M | train | 80.0 |
-
-multimask checkpoints are only available with commits>=9d00853, while other checkpoints are available with commits<9d00853
-
-multimask checkpoints are jointly trained on Ref, ADE20k, Object365, PartImageNet, humanparsing, pascal part datasets. These checkpoints are able to segment part (e.g., hair, arm), background object (e.g., sky, ground), and semantic-level masks. (by adding special token "[semantic] " in front your prompt)
python inference.py \
--version <path to evf-sam> \
--precision='fp16' \
--vis_save_path "<path to your output direction>" \
--model_type <"ori" or "effi" or "sam2", depending on your loaded ckpt> \
--image_path <path to your input image> \
--prompt <customized text prompt>
--load_in_8bit
and --load_in_4bit
are optional
for example:
python inference.py \
--version YxZhang/evf-sam2 \
--precision='fp16' \
--vis_save_path "vis" \
--model_type sam2 \
--image_path "assets/zebra.jpg" \
--prompt "zebra top left"
firstly slice video into frames
ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <frame_dir>/'%05d.jpg'
then:
python inference_video.py \
--version <path to evf-sam2> \
--precision='fp16' \
--vis_save_path "vis/" \
--image_path <frame_dir> \
--prompt <customized text prompt> \
--model_type sam2
you can use frame2video.py to concat the predicted frames to a video.
image demo
python demo.py <path to evf-sam>
video demo
python demo_video.py <path to evf-sam2>
Referring segmentation datasets: refCOCO, refCOCO+, refCOCOg, refCLEF (saiapr_tc-12) and COCO2014train
βββ dataset
βΒ Β βββ refer_seg
βΒ Β βΒ Β βββ images
βΒ Β βΒ Β | βββ saiapr_tc-12
βΒ Β βΒ Β | βββ mscoco
βΒ Β βΒ Β | βββ images
βΒ Β βΒ Β | βββ train2014
βΒ Β βΒ Β βββ refclef
βΒ Β βΒ Β βββ refcoco
βΒ Β βΒ Β βββ refcoco+
βΒ Β βΒ Β βββ refcocog
torchrun --standalone --nproc_per_node <num_gpus> eval.py \
--version <path to evf-sam> \
--dataset_dir <path to your data root> \
--val_dataset "refcoco|unc|val" \
--model_type <"ori" or "effi" or "sam2", depending on your loaded ckpt>
We borrow some codes from LISA, unilm, SAM, EfficientSAM, SAM-2.
@article{zhang2024evfsamearlyvisionlanguagefusion,
title={EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model},
author={Yuxuan Zhang and Tianheng Cheng and Rui Hu and Lei Liu and Heng Liu and Longjin Ran and Xiaoxin Chen and Wenyu Liu and Xinggang Wang},
year={2024},
eprint={2406.20076},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.20076},
}