forked from gloomyfish1998/opencv_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9ffd84b
commit 28a797c
Showing
4 changed files
with
262 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
aeroplane | ||
bicycle | ||
bird | ||
boat | ||
bottle | ||
bus | ||
car | ||
cat | ||
chair | ||
cow | ||
diningtable | ||
dog | ||
horse | ||
motorbike | ||
person | ||
pottedplant | ||
sheep | ||
sofa | ||
train | ||
tvmonitor |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
[net] | ||
# Testing | ||
batch=1 | ||
subdivisions=1 | ||
# Training | ||
# batch=64 | ||
# subdivisions=2 | ||
width=416 | ||
height=416 | ||
channels=3 | ||
momentum=0.9 | ||
decay=0.0005 | ||
angle=0 | ||
saturation = 1.5 | ||
exposure = 1.5 | ||
hue=.1 | ||
|
||
learning_rate=0.001 | ||
max_batches = 40200 | ||
policy=steps | ||
steps=-1,100,20000,30000 | ||
scales=.1,10,.1,.1 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=16 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=2 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=32 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=2 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=64 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=2 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=128 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=2 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=256 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=2 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=512 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
[maxpool] | ||
size=2 | ||
stride=1 | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
filters=1024 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
activation=leaky | ||
|
||
########### | ||
|
||
[convolutional] | ||
batch_normalize=1 | ||
size=3 | ||
stride=1 | ||
pad=1 | ||
filters=1024 | ||
activation=leaky | ||
|
||
[convolutional] | ||
size=1 | ||
stride=1 | ||
pad=1 | ||
filters=125 | ||
activation=linear | ||
|
||
[region] | ||
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 | ||
bias_match=1 | ||
classes=20 | ||
coords=4 | ||
num=5 | ||
softmax=1 | ||
jitter=.2 | ||
rescore=1 | ||
|
||
object_scale=5 | ||
noobject_scale=1 | ||
class_scale=1 | ||
coord_scale=1 | ||
|
||
absolute=1 | ||
thresh = .6 | ||
random=1 |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
#include <opencv2/dnn.hpp> | ||
#include <opencv2/imgproc.hpp> | ||
#include <opencv2/highgui.hpp> | ||
|
||
using namespace cv; | ||
using namespace cv::dnn; | ||
|
||
#include <iostream> | ||
#include <cstdlib> | ||
using namespace std; | ||
|
||
const size_t inWidth = 300; | ||
const size_t inHeight = 300; | ||
const double inScaleFactor = 1.0; | ||
const Scalar meanVal(104.0, 177.0, 123.0); | ||
const float confidenceThreshold = 0.5; | ||
int main(int argc, char** argv) | ||
{ | ||
String modelDesc = "D:/vcprojects/images/dnn/face/deploy.prototxt"; | ||
String modelBinary = "D:/vcprojects/images/dnn/face/res10_300x300_ssd_iter_140000.caffemodel"; | ||
|
||
// 初始化网络 | ||
dnn::Net net = readNetFromCaffe(modelDesc, modelBinary); | ||
if (net.empty()) | ||
{ | ||
printf("could not load net...\n"); | ||
return -1; | ||
} | ||
|
||
// 打开摄像头 | ||
VideoCapture capture(0); | ||
if (!capture.isOpened()) { | ||
printf("could not load camera...\n"); | ||
return -1; | ||
} | ||
|
||
Mat frame; | ||
int index = 0; | ||
while (capture.read(frame)) { | ||
if (frame.empty()) | ||
{ | ||
waitKey(); | ||
break; | ||
} | ||
// 水平镜像调整 | ||
flip(frame, frame, 1); | ||
imshow("input", frame); | ||
if (frame.channels() == 4); | ||
cvtColor(frame, frame, COLOR_BGRA2BGR); | ||
|
||
// 输入数据调整 | ||
Mat inputBlob = blobFromImage(frame, inScaleFactor, | ||
Size(inWidth, inHeight), meanVal, false, false); | ||
net.setInput(inputBlob, "data"); | ||
|
||
// 人脸检测 | ||
Mat detection = net.forward("detection_out"); | ||
vector<double> layersTimings; | ||
double freq = getTickFrequency() / 1000; | ||
double time = net.getPerfProfile(layersTimings) / freq; | ||
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); | ||
|
||
ostringstream ss; | ||
ss << "FPS: " << 1000 / time << " ; time: " << time << " ms"; | ||
putText(frame, ss.str(), Point(20, 20), 0, 0.5, Scalar(0, 0, 255)); | ||
for (int i = 0; i < detectionMat.rows; i++) | ||
{ | ||
// 置信度 0~1之间 | ||
float confidence = detectionMat.at<float>(i, 2); | ||
if (confidence > confidenceThreshold) | ||
{ | ||
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); | ||
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); | ||
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); | ||
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); | ||
|
||
Rect object((int)xLeftBottom, (int)yLeftBottom, | ||
(int)(xRightTop - xLeftBottom), | ||
(int)(yRightTop - yLeftBottom)); | ||
|
||
rectangle(frame, object, Scalar(0, 255, 0)); | ||
|
||
ss.str(""); | ||
ss << confidence; | ||
String conf(ss.str()); | ||
String label = "Face: " + conf; | ||
int baseLine = 0; | ||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); | ||
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), | ||
Size(labelSize.width, labelSize.height + baseLine)), | ||
Scalar(255, 255, 255), CV_FILLED); | ||
putText(frame, label, Point(xLeftBottom, yLeftBottom), | ||
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0)); | ||
} | ||
} | ||
index++; | ||
imwrite(format("D:/gloomyfish/picture/face_0%d.png", index), frame); | ||
imshow("dnn_face_detection", frame); | ||
if (waitKey(1) >= 0) break; | ||
} | ||
|
||
waitKey(0); | ||
return 0; | ||
} |