Skip to content

immunogenomics/RA_Atlas_CITEseq

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RA_Atlas_CITEseq

DOI

Overview

This repo provides the data, code, and website for our work on "Cellular deconstruction of inflamed synovium defines diverse inflammatory phenotypes in rheumatoid arthritis". The data is generated through a collaborative effort with NIH funded AMP RA/SLE (Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus).

- RA Synovial Single-cell Multimodal (transcriptomics and Proteomics) Cell Atlas
- Inflammatory tissue stratification: RA Synovial Cell Type Abundance Phenotypes (CTAPs)
- Associations of certain CTAPs with disease-relevant cytokines, histology, serology metrics
- Reveal significant associations between RA causal genes and cell type-specific synovial CTAPs
- Infer inflammatory phenotypes from clinical trial bulk RNA-seq of RA synovial tissue
- Functional cell-cell interaction and immune mediator assays
- Microscopy analysis for different synovial phenotypes 

Citation

Our paper can be cited: Zhang*, Jonsson*, Nathan*, Wei*, Millard*, et al, Nature, 2023, https://www.nature.com/articles/s41586-023-06708-y

Website

Feel free to check out our Website regarding the single-cell data and results.

Source code

Source code for reproducing the results are available at our Github repo.

Data availability

CITE-seq single-cell expression matrices and sequencing and bulk expression matrices are available on Synapse (https://doi.org/10.7303/syn52297840).

Associated genotype and clinical data are available through the Arthritis and Autoimmune and Related Diseases Knowledge Portal (ARK Portal, https://arkportal.synapse.org/Explore/Datasets/DetailsPage?id=syn52297840).

Data Description:

  • Each cell type-specific reference is provided based on one cell type-focused analysis. This could support reference mapping analysis based on the anchor genes, a downstream analysis to query and annotate cells from other disease contexts.
Bcell_reference.rds
Bcell_uwot_model
NK_reference.rds
NK_uwot_model
T_reference.rds
T_uwot_model
endothelial_reference.rds
endothelial_uwot_model
fibroblast_reference.rds
fibroblast_uwot_model
myeloid_reference.rds
myeloid_uwot_model

Every reference data has the same data structure format. Taking one cell type reference as an example, you will see the substructures as follows.

> ref <- readRDS("myeloid_reference_2023-03-12.rds")
> str(ref)

 $ meta_data     :'data.frame':	76181 obs. of  7 variables:
  ..$ cell          : chr [1:76181] "BRI-399_AAACCCAGTAGGAGGG" "BRI-399_AAACGCTGTTCAAGTC" "BRI-399_AAAGGATTCTGTACAG" "BRI-399_AAAGGTAAGCTGGCTC" ...
  ..$ sample        : chr [1:76181] "BRI-399" "BRI-399" "BRI-399" "BRI-399" ...
  ..$ cluster_number: chr [1:76181] "M-10" "M-10" "M-0" "M-7" ...
  ..$ cluster_name  : chr [1:76181] "M-10: DC2" "M-10: DC2" "M-0: MERTK+ SELENOP+ LYVE1+" "M-7: IL1B+ FCN1+ HBEGF+" ...
  ..$ nUMI          : num [1:76181] 33644 17084 4999 16721 11235 ...
  ..$ nGene         : int [1:76181] 5515 3806 1770 3767 3101 4788 3460 4028 3463 3152 ...
  ..$ percent_mito  : num [1:76181] 0.0847 0.0446 0.1658 0.1576 0.0129 ...
 $ vargenes      : tibble [3,547 × 3] (S3: tbl_df/tbl/data.frame)
  ..$ symbol: chr [1:3547] "CXCL13" "CCL17" "CHI3L1" "SPP1" ...
  ..$ mean  : Named num [1:3547] 0.0256 0.0208 0.0429 1.0576 0.2033 ...
  .. ..- attr(*, "names")= chr [1:3547] "CXCL13" "CCL17" "CHI3L1" "SPP1" ...
  ..$ stddev: Named num [1:3547] 0.227 0.226 0.192 1.682 0.452 ...
  .. ..- attr(*, "names")= chr [1:3547] "CXCL13" "CCL17" "CHI3L1" "SPP1" ...
 $ loadings      : num [1:3547, 1:20] -0.00166 -0.00647 0.00709 0.00111 0.04714 ...
 $ R             : num [1:100, 1:76181] 2.21e-14 1.81e-06 4.35e-08 3.66e-08 1.70e-14 ...
 $ Z_orig        : num [1:20, 1:76181] -7.567 0.538 -8.644 -5.862 -2.298 ...
 $ Z_corr        : num [1:20, 1:76181] -7.559 -1.46 -5.743 -3.853 0.223 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:20] "harmony_1" "harmony_2" "harmony_3" "harmony_4" ...
  .. ..$ : chr [1:76181] "4" "28" "38" "47" ...
 $ centroids     : num [1:20, 1:100] 0.92797 0.29046 -0.05318 -0.00418 -0.00714 ...
 $ cache         :List of 2
  ..$ : num [1:100, 1] 768 865 845 756 775 ...
  ..$ : num [1:100, 1:20] 7880 -11077 -6132 -1873 6180 ...
 $ umap          :List of 1
  ..$ embedding: num [1:76181, 1:2] -5.02 -5.62 1.78 -4.26 -4.35 ...
  .. ..- attr(*, "scaled:center")= num [1:2] 0.19 0.343
  .. ..- attr(*, "dimnames")=List of 2
  .. .. ..$ : NULL
  .. .. ..$ : chr [1:2] "UMAP1" "UMAP2"
 $ save_uwot_path: chr "./myeloid_uwot_model_2021-04-29"

As you can see above, the cluster_number and cluster_name are given under ref$meta_data. Further, some key outpus are explained as follows:

# vargenes: variable genes, means, and standard deviations used for scaling
# loadings: gene loadings for projection into pre-Harmony PC space
# R: Soft cluster assignments
# Z_orig: Pre-Harmony PC embedding
# Z_corr: Harmonized PC embedding
# centroids: locations of final Harmony soft cluster centroids
# cache: pre-calculated reference-dependent portions of the mixture model
# umap: UMAP coordinates
# save_uwot_path: path to saved uwot model (for query UMAP projection into reference UMAP coordinates)
  • CTAP assignment to donor ID: CTAP_donor_mapping.xlsx
> map <- read_excel("CTAP_donor_mapping.xlsx")
> head(map)
  subject_id   donor      CTAP
1   300-0310 BRI-405 E + F + M
2   300-0309 BRI-411 E + F + M
3   300-0174 BRI-479 E + F + M
4   300-0175 BRI-525 E + F + M
5   300-0529 BRI-554 E + F + M
6   300-0145 BRI-589 E + F + M
  • Reference for all cell type integrative analysis:
all_cells_reference.rds
all_cells_uwot_model
  • Cluster annotations for fine-grained cell states: fine_cluster_all_314011cells_82samples.rds
'data.frame':	314011 obs. of  5 variables:
 $ sample        : chr  "BRI-399" "BRI-399" "BRI-399" "BRI-399" ...
 $ cell          : chr  "BRI-399_AAACGAACAGTCTGGC" "BRI-399_AAAGGATGTCTCAAGT" "BRI-399_AAAGTGACATCGAACT" "BRI-399_AAAGTGAGTGCACAAG" ...
 $ cluster_number: chr  "B-2" "B-1" "B-2" "B-1" ...
 $ cluster_name  : Factor w/ 77 levels "B-0: CD24+CD27+CD11b+ switched memory",..: 2 4 2 4 1 4 3 3 2 8 ...
 $ cell_type     : chr  "B cell" "B cell" "B cell" "B cell" ...
  • Raw and processed matrices:
 raw_mRNA_count_matrix.rds: Raw mRNA count
 raw_protein_count_matrix.rds: Raw protein count
 qc_mRNA_314011cells_log_normalized_matrix.rds: QCed mRNA normalized data matrix
 qc_protein_CLR_normalized_filtered_matrix.rds: QCed protein normalized data matrix

Contact

Please email Fan Zhang ([email protected]) and Helena Jonsson ([email protected]) for any questions.