A SageMath package for checking the feasibility of distance-regular graph parameter sets. A more detailed description, along with some results, is available in a paper published in the Electronic Journal of Combinatorics.
The drg
folder contains the package source. After you make sure that Sage sees this folder, you can import it as a Python module.
sage: import drg
sage: p = drg.DRGParameters([80, 63, 12], [1, 12, 60])
sage: p.check_feasible()
You can also give an intersection array with parameters.
sage: r = var("r")
sage: fam = drg.DRGParameters([2*r^2*(2*r + 1), (2*r - 1)*(2*r^2 + r + 1), 2*r^2], [1, 2*r^2 , r*(4*r^2 - 1)])
sage: fam.check_feasible()
sage: fam1 = fam.subs(r == 1)
sage: fam1
Parameters of a distance-regular graph with intersection array {6, 4, 2; 1, 2, 3}
sage: fam2 = fam.subs(r == 2)
sage: fam2
Parameters of a distance-regular graph with intersection array {40, 33, 8; 1, 8, 30}
sage: fam2.check_feasible()
...
InfeasibleError: nonexistence by JurišićVidali12
A collection of sample Jupyter notebooks giving some nonexistence results. Also includes conference and seminar presentations.
If you use sage-drg
in your research, please cite both the paper and the software:
-
J. Vidali. Using symbolic computation to prove nonexistence of distance-regular graphs. Electron. J. Combin., 25(4)#P4.21, 2018.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21
. -
J. Vidali.
jaanos/sage-drg
:sage-drg
v0.9, 2019.https://github.com/jaanos/sage-drg/
,doi:10.5281/zenodo.1418409
.
You may also want to cite other documents containing descriptions of features that were added since the above paper was written:
-
J. Vidali. Computing distance-regular graph and association scheme parameters in SageMath with
sage-drg
. Sém. Lothar. Combin. 82B#105, 2019.https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2019/105.pdf
- support for general and Q-polynomial association schemes
-
A. L. Gavrilyuk, J. Vidali, J. S. Williford. On few-class Q-polynomial association schemes: feasible parameters and nonexistence results, Ars Math. Contemp., 20(1):103-127, 2021.
doi:10.26493/1855-3974.2101.b76
.- triple intersection number solution finder and forbidden quadruples check
- support for quadruple intersection numbers
The above citations are given here in BibTeX format.
@article{v18,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {Using symbolic computation to prove nonexistence of distance-regular graphs},
JOURNAL = {Electron. J. Combin.},
FJOURNAL = {Electronic Journal of Combinatorics},
VOLUME = {25},
NUMBER = {4},
PAGES = {P4.21},
NOTE = {\url{http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21}},
YEAR = {2018},
}
@software{v19a,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {{\tt jaanos/sage-drg}: {\tt sage-drg} v0.9},
NOTE = {\url{https://github.com/jaanos/sage-drg/},
\href{https://doi.org/10.5281/zenodo.1418409}{\texttt{doi:10.5281/zenodo.1418409}}},
YEAR = {2019},
}
@article{v19b,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {Computing distance-regular graph and association scheme parameters in SageMath with {\tt sage-drg}},
JOURNAL = {S\'{e}m. Lothar. Combin.},
FJOURNAL = {S\'{e}minaire Lotharingien de Combinatoire},
VOLUME = {82B},
PAGES = {#105},
NOTE = {\url{https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2019/105.pdf}},
YEAR = {2019},
}
@article{gvw21,
AUTHOR = {Gavrilyuk, Alexander L. and Vidali, Jano\v{s} and Williford, Jason S.},
TITLE = {On few-class $Q$-polynomial association schemes: feasible parameters and nonexistence results},
JOURNAL = {Ars Math. Contemp.},
FJOURNAL = {Ars Mathematica Contemporanea},
VOLUME = {20},
NUMBER = {1},
PAGES = {103--127},
NOTE = {\href{https://doi.org/10.26493/1855-3974.2101.b76}{\texttt{doi:10.26493/1855-3974.2101.b76}}},
YEAR = {2021},
}
Additionally, sage-drg
has been used in the following research:
- A. Gavrilyuk, S. Suda and J. Vidali. On tight 4-designs in Hamming association schemes, Combinatorica, 40(3):345-362, 2020.
doi:10.1007/s00493-019-4115-z
.
If you would like your research to be listed here, feel free to open an issue or pull request.