-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
206 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
#!python | ||
# -*- coding: utf-8 -*- | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from librosa.filters import mel as librosa_mel_fn | ||
|
||
|
||
class Audio2Mel(nn.Module): | ||
def __init__( | ||
self, | ||
n_fft=1024, | ||
hop_length=256, | ||
win_length=1024, | ||
sampling_rate=22050, | ||
n_mel_channels=80, | ||
mel_fmin=0.0, | ||
mel_fmax=None, | ||
): | ||
super().__init__() | ||
############################################## | ||
# FFT Parameters # | ||
############################################## | ||
window = torch.hann_window(win_length).float() | ||
mel_basis = librosa_mel_fn( | ||
sampling_rate, n_fft, n_mel_channels, mel_fmin, mel_fmax | ||
) | ||
mel_basis = torch.from_numpy(mel_basis).float() | ||
self.register_buffer("mel_basis", mel_basis) | ||
self.register_buffer("window", window) | ||
self.n_fft = n_fft | ||
self.hop_length = hop_length | ||
self.win_length = win_length | ||
self.sampling_rate = sampling_rate | ||
self.n_mel_channels = n_mel_channels | ||
|
||
def forward(self, audio): | ||
p = (self.n_fft - self.hop_length) // 2 | ||
audio = F.pad(audio, (p, p), "reflect").squeeze(1) | ||
fft = torch.stft( | ||
audio, | ||
n_fft=self.n_fft, | ||
hop_length=self.hop_length, | ||
win_length=self.win_length, | ||
window=self.window, | ||
center=False, | ||
) | ||
real_part, imag_part = fft.unbind(-1) | ||
magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2) | ||
mel_output = torch.matmul(self.mel_basis, magnitude) | ||
log_mel_spec = torch.log10(torch.clamp(mel_output, min=1e-5)) | ||
return log_mel_spec |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
#!python | ||
# -*- coding: utf-8 -*- | ||
import os | ||
import yaml | ||
from pathlib import Path | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch.nn.utils import weight_norm | ||
|
||
from feature_utils import Audio2Mel | ||
|
||
|
||
def weights_init(m): | ||
classname = m.__class__.__name__ | ||
if classname.find("Conv") != -1: | ||
m.weight.data.normal_(0.0, 0.02) | ||
elif classname.find("BatchNorm2d") != -1: | ||
m.weight.data.normal_(1.0, 0.02) | ||
m.bias.data.fill_(0) | ||
|
||
|
||
def WNConv1d(*args, **kwargs): | ||
return weight_norm(nn.Conv1d(*args, **kwargs)) | ||
|
||
|
||
def WNConvTranspose1d(*args, **kwargs): | ||
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | ||
|
||
|
||
class ResnetBlock(nn.Module): | ||
def __init__(self, dim, dilation=1): | ||
super().__init__() | ||
self.block = nn.Sequential( | ||
nn.LeakyReLU(0.2), | ||
nn.ReflectionPad1d(dilation), | ||
WNConv1d(dim, dim, kernel_size=3, dilation=dilation), | ||
nn.LeakyReLU(0.2), | ||
WNConv1d(dim, dim, kernel_size=1), | ||
) | ||
self.shortcut = WNConv1d(dim, dim, kernel_size=1) | ||
|
||
def forward(self, x): | ||
return self.shortcut(x) + self.block(x) | ||
|
||
|
||
class Generator(nn.Module): | ||
def __init__(self, input_size, ngf, n_residual_layers): | ||
super().__init__() | ||
ratios = [8, 8, 2, 2] | ||
self.hop_length = np.prod(ratios) | ||
mult = int(2 ** len(ratios)) | ||
|
||
model = [ | ||
nn.ReflectionPad1d(3), | ||
WNConv1d(input_size, mult * ngf, kernel_size=7, padding=0), | ||
] | ||
|
||
# Upsample to raw audio scale | ||
for i, r in enumerate(ratios): | ||
model += [ | ||
nn.LeakyReLU(0.2), | ||
WNConvTranspose1d( | ||
mult * ngf, | ||
mult * ngf // 2, | ||
kernel_size=r * 2, | ||
stride=r, | ||
padding=r // 2 + r % 2, | ||
output_padding=r % 2, | ||
), | ||
] | ||
|
||
for j in range(n_residual_layers): | ||
model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)] | ||
|
||
mult //= 2 | ||
|
||
model += [ | ||
nn.LeakyReLU(0.2), | ||
nn.ReflectionPad1d(3), | ||
WNConv1d(ngf, 1, kernel_size=7, padding=0), | ||
nn.Tanh(), | ||
] | ||
|
||
self.model = nn.Sequential(*model) | ||
self.apply(weights_init) | ||
|
||
def forward(self, x): | ||
return self.model(x) | ||
|
||
|
||
def get_default_device(): | ||
if torch.cuda.is_available(): | ||
return "cuda" | ||
else: | ||
return "cpu" | ||
|
||
|
||
def load_model(mel2wav_path, device=get_default_device()): | ||
""" | ||
Args: | ||
mel2wav_path (str or Path): path to the root folder of dumped text2mel | ||
device (str or torch.device): device to load the model | ||
""" | ||
root = Path(mel2wav_path) | ||
with open(root / "args.yml", "r") as f: | ||
args = yaml.load(f, Loader=yaml.FullLoader) | ||
netG = Generator(args.n_mel_channels, args.ngf, args.n_residual_layers).to(device) | ||
netG.load_state_dict(torch.load(root / "best_netG.pt", map_location=device)) | ||
return netG | ||
|
||
|
||
class MelVocoder: | ||
def __init__( | ||
self, | ||
path, | ||
device=get_default_device(), | ||
github=False, | ||
model_name="multi_speaker", | ||
): | ||
self.fft = Audio2Mel().to(device) | ||
if github: | ||
netG = Generator(80, 32, 3).to(device) | ||
root = Path(os.path.dirname(__file__)).parent | ||
netG.load_state_dict( | ||
torch.load(root / f"models/{model_name}.pt", map_location=device) | ||
) | ||
self.mel2wav = netG | ||
else: | ||
self.mel2wav = load_model(path, device) | ||
self.device = device | ||
|
||
def __call__(self, audio): | ||
""" | ||
Performs audio to mel conversion (See Audio2Mel in mel2wav/modules.py) | ||
Args: | ||
audio (torch.tensor): PyTorch tensor containing audio (batch_size, timesteps) | ||
Returns: | ||
torch.tensor: log-mel-spectrogram computed on input audio (batch_size, 80, timesteps) | ||
""" | ||
return self.fft(audio.unsqueeze(1).to(self.device)) | ||
|
||
def inverse(self, mel): | ||
""" | ||
Performs mel2audio conversion | ||
Args: | ||
mel (torch.tensor): PyTorch tensor containing log-mel spectrograms (batch_size, 80, timesteps) | ||
Returns: | ||
torch.tensor: Inverted raw audio (batch_size, timesteps) | ||
""" | ||
with torch.no_grad(): | ||
return self.mel2wav(mel.to(self.device)).squeeze(1) |