Skip to content

jazzseow/Object_Detection_on_Android

 
 

Repository files navigation

Faster RCNN on Android

Faster RCNN build on Android with the help of these people: https://github.com/solrex/caffe-mobile https://github.com/manutdzou/faster-rcnn-pure-c-plus-implement

Screenshots

For Demo

Follow the instructions from https://github.com/solrex/caffe-mobile

Step 1: Build Caffe-Mobile Lib with cmake

Test passed ANDROID_ABI:

  • arm64-v8a
  • armeabi
  • armeabi-v7a with NEON (not stable)
$ git clone --recursive https://github.com/solrex/caffe-mobile.git
$ export NDK_HOME=/path/to/your/ndk  # C:/path/to/your/ndk on MinGW64 (/c/path/to/your/ndk not work for OpenBLAS)
$ ./tools/build_android.sh

Step 2: Build Android App: CaffeSimple with Android Studio

VGG16 Faster RCNN model is used for this app. To run the app, you will need to move the net.protobin and weight.caffemodel from '$ROOT/models/' to '/sdcard/ObjectDetection/' in your Android mobile phone. Create the folder if needed.

To add your custom model/layer

Info to be added

For MacOSX & Ubuntu

Step 1: Install dependency

$ brew install protobuf # MacOSX
$ sudo apt install libprotobuf-dev protobuf-compiler libatlas-dev # Ubuntu

Step 2: Build Caffe-Mobile Lib with cmake

$ git clone --recursive https://github.com/solrex/caffe-mobile.git
$ mkdir build
$ cd ../build
$ cmake ..
$ make -j 4

Step 3: Build Caffe-bin with cmake

$ brew install gflags
$ cmake .. -DTOOLS
$ make -j 4

Thanks

About

Faster RCNN on Android using Caffe

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 87.5%
  • Protocol Buffer 7.6%
  • CMake 4.6%
  • Python 0.3%