- 😄 Hi there, this is Jindong Wang. I am a Senior Researcher at Microsoft Research Asia (MSRA).
- 🔭 My research interest includes robust machine learning, transfer learning, out-of-distribution generalization, machine learning, and other applications.
- 👯 I am open to collaboration, feel free to contact me via Email (👈)!
- ⚡ Please check my homepage for my CV and latest update!
Senior Researcher at Microsoft Research. Research interest: robust machine learning, transfer learning, out-of-distribution generalization, general ML.
- Beijing, China
- http://www.jd92.wang
- @jd92wang
Pinned Loading
-
transferlearning
transferlearning PublicTransfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习
-
microsoft/Semi-supervised-learning
microsoft/Semi-supervised-learning PublicA Unified Semi-Supervised Learning Codebase (NeurIPS'22)
-
microsoft/promptbench
microsoft/promptbench PublicA unified evaluation framework for large language models
-
microsoft/robustlearn
microsoft/robustlearn PublicRobust machine learning for responsible AI
-
microsoft/PersonalizedFL
microsoft/PersonalizedFL PublicPersonalized federated learning codebase for research
-
TorchSSL/TorchSSL
TorchSSL/TorchSSL PublicA PyTorch-based library for semi-supervised learning (NeurIPS'21)
186 contributions in the last year
Day of Week | March Mar | April Apr | May May | June Jun | July Jul | August Aug | September Sep | October Oct | November Nov | December Dec | January Jan | February Feb | |||||||||||||||||||||||||||||||||||||||||
Sunday Sun | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Monday Mon | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Tuesday Tue | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Wednesday Wed | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Thursday Thu | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Friday Fri | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Saturday Sat |
Less
No contributions.
Low contributions.
Medium-low contributions.
Medium-high contributions.
High contributions.
More