Skip to content

Fix error inconsistency for divrem and binary operations (#1345) #76

Fix error inconsistency for divrem and binary operations (#1345)

Fix error inconsistency for divrem and binary operations (#1345) #76

Triggered via push January 5, 2024 14:17
Status Success
Total duration 1h 39m 58s
Artifacts

CI.yml

on: push
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

1 warning
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2174 docstrings not included in the manual: has_preimage :: Tuple{GrpGenToGrpGenMor, GrpGenElem} has_preimage :: Tuple{TorQuadModuleMor, TorQuadModuleElem} istorsion_unit_group_known _brown_indecomposable :: Tuple{MatElem, ZZRingElem} NumFieldOrdFracIdl lll_with_transform :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}} absolute_frobenius :: Union{Tuple{FqFieldElem}, Tuple{FqFieldElem, Any}} AcbField :: Tuple{qqbar} complex_normal_form :: Tuple{ca} ispositive_definite isnormal_difficult istamely_ramified EllCrv :: Union{Tuple{Vector{S}}, Tuple{T}, Tuple{S}} where {S, T} iscochain_complex solvemod :: Tuple{ZZRingElem, ZZRingElem, ZZRingElem} _two_adic_symbol :: Tuple{ZZMatrix, Int64} hasalgebra hasse_interval :: Tuple{EllCrv{<:FinFieldElem}} finite_divisor :: Tuple{Divisor} closure :: Union{Tuple{T}, Tuple{T, Vector{T}}} where T<:MatElem reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}}} where T reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}, T}} where T islocal_square nextpow2 :: Tuple{ZZRingElem} NumFieldOrdIdl algebra :: Tuple{Hecke.AlgAssRelOrd} algebra :: Tuple{Hecke.AlgAssAbsOrd} algebra :: Tuple{Hecke.AbsAlgAssIdl} algebra :: Tuple{Hecke.AlgAssAbsOrdIdl} algebra :: Tuple{Hecke.AlgAssRelOrdIdl} isidentity _gram_from_jordan_block :: Union{Tuple{ZZRingElem, Any}, Tuple{ZZRingElem, Any, Any}} order_via_schoof :: Union{Tuple{EllCrv{T}}, Tuple{T}} where T<:FinFieldElem is_locally_isomorphic :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl} isfree isdivisible height_pairing :: Union{Tuple{T}, Tuple{EllCrvPt{T}, EllCrvPt{T}}, Tuple{EllCrvPt{T}, EllCrvPt{T}, Int64}} where T<:Union{QQFieldElem, nf_elem} matrix :: Tuple{TorQuadModuleMor} matrix :: Tuple{AlgMatElem} knot :: Tuple{ClassField} is_invertible :: Tuple{NfAbsOrdIdl} is_invertible :: Tuple{Hecke.AbsAlgAssElem} agm :: Tuple{arb, arb} agm :: Tuple{acb} agm :: Tuple{ComplexFieldElem, ComplexFieldElem} agm :: Tuple{acb, acb} agm :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}} agm :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} dimension :: Tuple{Divisor} grunwald_wang :: Union{Tuple{Dict{<:NumFieldOrdIdl, Int64}}, Tuple{Dict{<:NumFieldOrdIdl, Int64}, Dict{<:Hecke.NumFieldEmb, Int64}}} extend_easy :: Tuple{Hecke.NfOrdToFqNmodMor, AnticNumberField} formal_differential_form :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} EmbeddedNumField issimple_known hermite_constant :: Union{Tuple{Int64}, Tuple{Int64, Any}} collect_small_blocks :: Tuple{Any} height_bits :: Tuple{QQFieldElem} height_bits :: Tuple{qqbar} locally_free_basis :: Tuple{Hecke.AlgAssRelOrd, Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} locally_free_basis :: Tuple{Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}} locally_free_basis :: Tuple{Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} locally_free_basis :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}} det_nondegenerate_part :: Tuple{Hecke.QuadSpaceCls} det_nondegenerate_part :: Tuple{Hecke.LocalQuadSpaceCls} set_var! :: Union{Tuple{T}, Tuple{SimpleNumField{T}, String}} where T AbsSpace abs :: Tuple{qqbar} abs :: Tuple{ca} K1 :: Tuple{AlgAss{<:FinFieldElem}} signature_tuple :: Tuple{Hecke.QuadSpace{QQField, QQMatrix}} signature_tuple :: Tuple{ZZGenus} signature_tuple :: Tuple{Hecke.QuadSpace, InfPlc} matrix_algebra :: Tuple{Ring, NCRing, Int64} matrix_algebra :: Tuple{Ring, Vector{<:MatElem}} matrix_algebra :: Tuple{Ring, Int64} matrix_algebra :: Tuple{Ring, NCRing, Vector{<:MatElem}} solve_rational :: Tuple{ZZMatrix, ZZMatrix} ring_of_integers :: Tuple{T} where T torsion_unit_order :: Tuple{NfOrdElem, Int64} show_psi :: Tuple{Integer, Union{Int6