Skip to content

Commit

Permalink
Add Python ASR examples with alsa
Browse files Browse the repository at this point in the history
  • Loading branch information
csukuangfj committed Mar 8, 2024
1 parent e342705 commit 2c4b952
Show file tree
Hide file tree
Showing 3 changed files with 208 additions and 1 deletion.
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,7 @@ include(CheckIncludeFileCXX)
if(UNIX AND NOT APPLE AND NOT SHERPA_ONNX_ENABLE_WASM AND NOT CMAKE_SYSTEM_NAME STREQUAL Android)
check_include_file_cxx(alsa/asoundlib.h SHERPA_ONNX_HAS_ALSA)
if(SHERPA_ONNX_HAS_ALSA)
message(STATUS "With Alsa")
add_definitions(-DSHERPA_ONNX_ENABLE_ALSA=1)
else()
message(WARNING "\
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
#!/usr/bin/env python3

# Real-time speech recognition from a microphone with sherpa-onnx Python API
# with endpoint detection.
#
# Note: This script uses ALSA and works only on Linux systems.
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# to download pre-trained models

import argparse
import sys
from pathlib import Path
import sherpa_onnx


def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)


def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)

parser.add_argument(
"--encoder",
type=str,
required=True,
help="Path to the encoder model",
)

parser.add_argument(
"--decoder",
type=str,
required=True,
help="Path to the decoder model",
)

parser.add_argument(
"--joiner",
type=str,
required=True,
help="Path to the joiner model",
)

parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="Valid values are greedy_search and modified_beam_search",
)

parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)

parser.add_argument(
"--hotwords-file",
type=str,
default="",
help="""
The file containing hotwords, one words/phrases per line, and for each
phrase the bpe/cjkchar are separated by a space. For example:
▁HE LL O ▁WORLD
你 好 世 界
""",
)

parser.add_argument(
"--hotwords-score",
type=float,
default=1.5,
help="""
The hotword score of each token for biasing word/phrase. Used only if
--hotwords-file is given.
""",
)

parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)

parser.add_argument(
"--device-name",
type=str,
required=True,
help="""
The device name specifies which microphone to use in case there are several
on your system. You can use
arecord -l
to find all available microphones on your computer. For instance, if it outputs
**** List of CAPTURE Hardware Devices ****
card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
and if you want to select card 3 and the device 0 on that card, please use:
plughw:3,0
as the device_name.
""",
)

return parser.parse_args()


def create_recognizer(args):
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert_file_exists(args.tokens)
# Please replace the model files if needed.
# See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# for download links.
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=1,
sample_rate=16000,
feature_dim=80,
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=300, # it essentially disables this rule
decoding_method=args.decoding_method,
provider=args.provider,
hotwords_file=args.hotwords_file,
hotwords_score=args.hotwords_score,
blank_penalty=args.blank_penalty,
)
return recognizer


def main():
args = get_args()
device_name = args.device_name
print(f"device_name: {device_name}")
alsa = sherpa_onnx.Alsa(device_name)

print("Creating recognizer")
recognizer = create_recognizer(args)
print("Started! Please speak")

sample_rate = 16000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms

stream = recognizer.create_stream()

last_result = ""
segment_id = 0
while True:
samples = alsa.read(samples_per_read) # a blocking read
stream.accept_waveform(sample_rate, samples)
while recognizer.is_ready(stream):
recognizer.decode_stream(stream)

is_endpoint = recognizer.is_endpoint(stream)

result = recognizer.get_result(stream)

if result and (last_result != result):
last_result = result
print("\r{}:{}".format(segment_id, result), end="", flush=True)
if is_endpoint:
if result:
print("\r{}:{}".format(segment_id, result), flush=True)
segment_id += 1
recognizer.reset(stream)


if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")
2 changes: 1 addition & 1 deletion sherpa-onnx/python/csrc/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ set(srcs
voice-activity-detector.cc
)
if(SHERPA_ONNX_HAS_ALSA)
list(APPEND srcs ${CMAKE_SOURCE_DIR/sherpa-onnx/csrc/alsa.cc} alsa.cc)
list(APPEND srcs ${CMAKE_SOURCE_DIR}/sherpa-onnx/csrc/alsa.cc alsa.cc)
else()
list(APPEND srcs faked-alsa.cc)
endif()
Expand Down

0 comments on commit 2c4b952

Please sign in to comment.