Skip to content
/ firedup Public

Clone of OpenAI's Spinning Up in PyTorch

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.spinningup
Notifications You must be signed in to change notification settings

kashif/firedup

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to Fired Up in Deep RL!

This is a clone of OpenAI's Spinning Up in PyTorch. Spinning Up is an awesome educational resource produced by Josh Achiam, a research scientist at OpenAI, that makes it easier to learn about deep reinforcement learning (deep RL).

Installation

Fired Up requires Python3, PyTorch, OpenAI Gym, and OpenMPI.

Fired Up is currently only supported on Linux and OSX. It may be possible to install on Windows, though I haven't tested this OS.

Installing Python

We recommend installing Python through Anaconda. Anaconda is a Python distribution that includes many useful packages especially for scientific computing, as well as an environment manager called conda that makes package management simple.

Download and install Anaconda 2018.x (at time of writing, 2018.12) Python 3.7. Then create a conda environment for organizing packages used in Fired Up:

conda create -n firedup python=3.7

To use Python from the environment you just created, activate the environment with:

source activate firedup

You can alternatively use virtualenv with the Python3 version you have. Just install it via pip3 and then:

virtualenv firedup

To activate this virtual environment you need to:

source /path/to/firedup/bin/activate

Installing OpenMPI

Ubuntu

sudo apt update && sudo apt install libopenmpi-dev

Mac OS X

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following:

brew install openmpi

Installing Fired Up

git clone https://github.com/kashif/firedup.git
cd firedup
pip install -e .

Fired Up defaults to installing everything in Gym except the MuJoCo environments.

Check Your Install

To see if you've successfully installed Fired Up, try running PPO in the LunarLander-v2 environment with:

python -m fireup.run ppo --hid "[32,32]" --env LunarLander-v2 --exp_name installtest --gamma 0.999

After it finishes training, watch a video of the trained policy with:

python -m fireup.run test_policy data/installtest/installtest_s0

And plot the results with:

python -m fireup.run plot data/installtest/installtest_s0

Algorithms

The following algorithms are implemented in the Fired Up package:

  • Vanilla Policy Gradient (VPG)
  • Trust Region Policy Optimization (TRPO)
  • Proximal Policy Optimization (PPO)
  • Deep Q-Network (DQN)
  • Deep Deterministic Policy Gradient (DDPG)
  • Twin Delayed DDPG (TD3)
  • Soft Actor-Critic (SAC)

They are all implemented with MLP (non-recurrent) actor-critics, making them suitable for fully-observed, non-image-based RL environments, e.g. the Gym Mujoco environments.

Citation

If you use Fired Up in your research please use the following BibTeX entry:

@misc{rasulfiredup,
  author =       {Kashif Rasul and Joshua Achiam},
  title =        {Fired Up},
  howpublished = {\url{https://github.com/kashif/firedup/}},
  year =         {2019}
}

About

Clone of OpenAI's Spinning Up in PyTorch

Topics

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.spinningup

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages