Pyspark helper methods to maximize developer productivity.
Quinn validates DataFrames, extends core classes, defines DataFrame transformations, and provides SQL functions.
Quinn is uploaded to PyPi and can be installed with this command:
pip install quinn
from quinn.extensions import *
isFalsy()
source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy())
Returns True
if has_stuff
is None
or False
.
isTruthy()
source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy())
Returns True
unless has_stuff
is None
or False
.
isNullOrBlank()
source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank())
Returns True
if blah
is null
or blank (the empty string or a string that only contains whitespace).
isNotIn()
source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies))
Returns True
if fun_thing
is not included in the bobs_hobbies
list.
nullBetween()
source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age")))
Returns True
if age
is between lower_age
and upper_age
. If lower_age
is populated and upper_age
is null
, it will return True
if age
is greater than or equal to lower_age
. If lower_age
is null
and upper_age
is populate, it will return True
if age
is lower than or equal to upper_age
.
create_df()
spark.create_df(
[("jose", "a"), ("li", "b"), ("sam", "c")],
[("name", StringType(), True), ("blah", StringType(), True)]
)
Creates DataFrame with a syntax that's less verbose than the built-in createDataFrame
method.
transform()
source_df\
.transform(lambda df: with_greeting(df))\
.transform(lambda df: with_something(df, "crazy"))
Allows for multiple DataFrame transformations to be run and executed.
import quinn
validate_presence_of_columns()
quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"])
Raises an exception unless source_df
contains the name
, age
, and fun
column.
validate_schema()
quinn.validate_schema(source_df, required_schema)
Raises an exception unless source_df
contains all the StructFields
defined in the required_schema
.
validate_absence_of_columns()
quinn.validate_absence_of_columns(source_df, ["age", "cool"])
Raises an exception if source_df
contains age
or cool
columns.
single_space()
actual_df = source_df.withColumn(
"words_single_spaced",
quinn.single_space(col("words"))
)
Replaces all multispaces with single spaces (e.g. changes "this has some"
to "this has some"
.
remove_all_whitespace()
actual_df = source_df.withColumn(
"words_without_whitespace",
quinn.remove_all_whitespace(col("words"))
)
Removes all whitespace in a string (e.g. changes "this has some"
to "thishassome"
.
anti_trim()
actual_df = source_df.withColumn(
"words_anti_trimmed",
quinn.anti_trim(col("words"))
)
Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes " this has some "
to " thishassome "
.
remove_non_word_characters()
actual_df = source_df.withColumn(
"words_without_nonword_chars",
quinn.remove_non_word_characters(col("words"))
)
Removes all non-word characters from a string (e.g. changes "si%$#@!#$!@#mpsons"
to "simpsons"
.
exists()
source_df.withColumn(
"any_num_greater_than_5",
quinn.exists(lambda n: n > 5)(col("nums"))
)
nums
contains lists of numbers and exists()
returns True
if any of the numbers in the list are greater than 5. It's similar to the Python any
function.
forall()
source_df.withColumn(
"all_nums_greater_than_3",
quinn.forall(lambda n: n > 3)(col("nums"))
)
nums
contains lists of numbers and forall()
returns True
if all of the numbers in the list are greater than 3. It's similar to the Python all
function.
multi_equals()
source_df.withColumn(
"are_s1_and_s2_cat",
quinn.multi_equals("cat")(col("s1"), col("s2"))
)
multi_equals
returns true if s1
and s2
are both equal to "cat"
.
snake_case_col_names()
quinn.snake_case_col_names(source_df)
Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased.
sort_columns()
quinn.sort_columns(source_df, "asc")
Sorts the DataFrame columns in alphabetical order. Wide DataFrames are easier to navigate when they're sorted alphabetically.
column_to_list()
quinn.column_to_list(source_df, "name")
Converts a column in a DataFrame to a list of values.
two_columns_to_dictionary()
quinn.two_columns_to_dictionary(source_df, "name", "age")
Converts two columns of a DataFrame into a dictionary. In this example, name
is the key and age
is the value.
to_list_of_dictionaries()
quinn.to_list_of_dictionaries(source_df)
Converts an entire DataFrame into a list of dictionaries.
We are actively looking for feature requests, pull requests, and bug fixes.
Any developer that demonstrates excellence will be invited to be a maintainer of the project.