-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #27 from kazewong/10-refactoring-jim-for-an-easier…
…-adoption-for-production-in-lvk 10 refactoring jim for an easier adoption for production in lvk
- Loading branch information
Showing
56 changed files
with
1,649 additions
and
2,805 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -134,4 +134,8 @@ data | |
|
||
slurm_script* | ||
build* | ||
log* | ||
log* | ||
*.swp | ||
H1.txt | ||
L1.txt | ||
V1.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
../example/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
"""Generate the code reference pages.""" | ||
|
||
from pathlib import Path | ||
|
||
import mkdocs_gen_files | ||
|
||
nav = mkdocs_gen_files.Nav() | ||
|
||
|
||
for path in sorted(Path("src").rglob("*.py")): # | ||
module_path = path.relative_to("src").with_suffix("") # | ||
doc_path = path.relative_to("src").with_suffix(".md") # | ||
full_doc_path = Path("reference", doc_path) # | ||
|
||
parts = list(module_path.parts) | ||
|
||
if parts[-1] == "__init__": # | ||
parts = parts[:-1] | ||
elif parts[-1] == "__main__": | ||
continue | ||
|
||
nav[parts] = doc_path.as_posix() | ||
|
||
with mkdocs_gen_files.open(full_doc_path, "w") as fd: # | ||
identifier = ".".join(parts) # | ||
print("::: " + identifier, file=fd) # | ||
|
||
mkdocs_gen_files.set_edit_path(full_doc_path, path) # | ||
|
||
with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file: # | ||
nav_file.writelines(nav.build_literate_nav()) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Welcome to MkDocs | ||
|
||
For full documentation visit [mkdocs.org](https://www.mkdocs.org). | ||
|
||
## Commands | ||
|
||
* `mkdocs new [dir-name]` - Create a new project. | ||
* `mkdocs serve` - Start the live-reloading docs server. | ||
* `mkdocs build` - Build the documentation site. | ||
* `mkdocs -h` - Print help message and exit. | ||
|
||
## Project layout | ||
|
||
mkdocs.yml # The configuration file. | ||
docs/ | ||
index.md # The documentation homepage. | ||
... # Other markdown pages, images and other files. |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
mkdocs==1.4.3 # Main documentation generator. | ||
mkdocs-material==9.1.18 # Theme | ||
pymdown-extensions==10.1 # Markdown extensions e.g. to handle LaTeX. | ||
mkdocstrings[python]==0.22.0 # Autogenerate documentation from docstrings. | ||
mkdocs-jupyter==0.24.2 # Turn Jupyter Lab notebooks into webpages. | ||
mkdocs-gen-files==0.5.0 | ||
mkdocs-literate-nav=0.6.0 |
Empty file.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import time | ||
from jimgw.jim import Jim | ||
from jimgw.detector import H1, L1 | ||
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD | ||
from jimgw.waveform import RippleIMRPhenomD | ||
from jimgw.prior import Uniform | ||
import jax.numpy as jnp | ||
import jax | ||
|
||
jax.config.update("jax_enable_x64", True) | ||
|
||
########################################### | ||
########## First we grab data ############# | ||
########################################### | ||
|
||
total_time_start = time.time() | ||
|
||
# first, fetch a 4s segment centered on GW150914 | ||
gps = 1126259462.4 | ||
start = gps - 2 | ||
end = gps + 2 | ||
fmin = 20.0 | ||
fmax = 1024.0 | ||
|
||
ifos = ["H1", "L1"] | ||
|
||
H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) | ||
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) | ||
|
||
prior = Uniform( | ||
xmin=[10, 0.125, -1.0, -1.0, 0.0, -0.05, 0.0, -1, 0.0, 0.0, -1.0], | ||
xmax=[80.0, 1.0, 1.0, 1.0, 2000.0, 0.05, 2 * jnp.pi, 1.0, jnp.pi, 2 * jnp.pi, 1.0], | ||
naming=[ | ||
"M_c", | ||
"q", | ||
"s1_z", | ||
"s2_z", | ||
"d_L", | ||
"t_c", | ||
"phase_c", | ||
"cos_iota", | ||
"psi", | ||
"ra", | ||
"sin_dec", | ||
], | ||
transforms = {"q": ("eta", lambda params: params['q']/(1+params['q'])**2), | ||
"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi)), | ||
"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))} # sin and arcsin are periodize cos_iota and sin_dec | ||
) | ||
likelihood = TransientLikelihoodFD([H1, L1], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2) | ||
# likelihood = HeterodynedTransientLikelihoodFD([H1, L1], prior=prior, bounds=[prior.xmin, prior.xmax], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2) | ||
|
||
|
||
mass_matrix = jnp.eye(11) | ||
mass_matrix = mass_matrix.at[1, 1].set(1e-3) | ||
mass_matrix = mass_matrix.at[5, 5].set(1e-3) | ||
local_sampler_arg = {"step_size": mass_matrix * 3e-3} | ||
|
||
jim = Jim( | ||
likelihood, | ||
prior, | ||
n_loop_training=200, | ||
n_loop_production=10, | ||
n_local_steps=150, | ||
n_global_steps=150, | ||
n_chains=500, | ||
n_epochs=50, | ||
learning_rate=0.001, | ||
max_samples=45000, | ||
momentum=0.9, | ||
batch_size=50000, | ||
use_global=True, | ||
keep_quantile=0.0, | ||
train_thinning=1, | ||
output_thinning=10, | ||
local_sampler_arg=local_sampler_arg, | ||
) | ||
|
||
jim.maximize_likelihood([prior.xmin, prior.xmax]) | ||
jim.sample(jax.random.PRNGKey(42)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import time | ||
from jimgw.jim import Jim | ||
from jimgw.detector import H1, L1 | ||
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD | ||
from jimgw.waveform import RippleIMRPhenomD, RippleIMRPhenomPv2 | ||
from jimgw.prior import Uniform | ||
import jax.numpy as jnp | ||
import jax | ||
|
||
jax.config.update("jax_enable_x64", True) | ||
|
||
########################################### | ||
########## First we grab data ############# | ||
########################################### | ||
|
||
total_time_start = time.time() | ||
|
||
# first, fetch a 4s segment centered on GW150914 | ||
gps = 1126259462.4 | ||
start = gps - 2 | ||
end = gps + 2 | ||
fmin = 20.0 | ||
fmax = 1024.0 | ||
|
||
ifos = ["H1", "L1"] | ||
|
||
H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) | ||
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) | ||
|
||
waveform = RippleIMRPhenomPv2(f_ref=20) | ||
prior = Uniform( | ||
xmin = [10, 0.125, 0, 0, 0, 0, 0, 0, 0., -0.05, 0., -1, 0., 0.,-1.], | ||
xmax = [80., 1., jnp.pi, 2*jnp.pi, 1., jnp.pi, 2*jnp.pi, 1., 2000., 0.05, 2*jnp.pi, 1., jnp.pi, 2*jnp.pi, 1.], | ||
naming = ["M_c", "q", "s1_theta", "s1_phi", "s1_mag", "s2_theta", "s2_phi", "s2_mag", "d_L", "t_c", "phase_c", "cos_iota", "psi", "ra", "sin_dec"], | ||
transforms = {"q": ("eta", lambda params: params['q']/(1+params['q'])**2), | ||
"s1_theta": ("s1_x", lambda params: jnp.sin(params['s1_theta'])*jnp.cos(params['s1_phi'])*params['s1_mag']), | ||
"s1_phi": ("s1_y", lambda params: jnp.sin(params['s1_theta'])*jnp.sin(params['s1_phi'])*params['s1_mag']), | ||
"s1_mag": ("s1_z", lambda params: jnp.cos(params['s1_theta'])*params['s1_mag']), | ||
"s2_theta": ("s2_x", lambda params: jnp.sin(params['s2_theta'])*jnp.cos(params['s2_phi'])*params['s2_mag']), | ||
"s2_phi": ("s2_y", lambda params: jnp.sin(params['s2_theta'])*jnp.sin(params['s2_phi'])*params['s2_mag']), | ||
"s2_mag": ("s2_z", lambda params: jnp.cos(params['s2_theta'])*params['s2_mag']), | ||
"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi)), | ||
"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))} # sin and arcsin are periodize cos_iota and sin_dec | ||
) | ||
likelihood = TransientLikelihoodFD([H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2) | ||
# likelihood = HeterodynedTransientLikelihoodFD([H1, L1], prior=prior, bounds=[prior.xmin, prior.xmax], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2) | ||
|
||
|
||
mass_matrix = jnp.eye(prior.n_dim) | ||
mass_matrix = mass_matrix.at[1, 1].set(1e-3) | ||
mass_matrix = mass_matrix.at[9, 9].set(1e-3) | ||
local_sampler_arg = {"step_size": mass_matrix * 3e-3} | ||
|
||
jim = Jim( | ||
likelihood, | ||
prior, | ||
n_loop_training=400, | ||
n_loop_production=10, | ||
n_local_steps=300, | ||
n_global_steps=300, | ||
n_chains=500, | ||
n_epochs=300, | ||
learning_rate=0.001, | ||
max_samples = 60000, | ||
momentum=0.9, | ||
batch_size=30000, | ||
use_global=True, | ||
keep_quantile=0., | ||
train_thinning=1, | ||
output_thinning=30, | ||
local_sampler_arg=local_sampler_arg, | ||
num_layers = 4, | ||
hidden_size = [32,32], | ||
num_bins = 8 | ||
) | ||
|
||
jim.maximize_likelihood([prior.xmin, prior.xmax]) | ||
# initial_guess = jnp.array(jnp.load('initial.npz')['chain']) | ||
jim.sample(jax.random.PRNGKey(42)) |
Oops, something went wrong.