This repository is the official implementation of the paper: PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for Linear and Integer Programming (Accepted to Mathematical Programming Computation (MPC))
Citation:
@article{tang2024,
title={PyEPO: a PyTorch-based end-to-end predict-then-optimize library for linear and integer programming},
author={Tang, Bo and Khalil, Elias B},
journal={Mathematical Programming Computation},
issn={1867-2957},
doi={10.1007/s12532-024-00255-x},
year={2024},
month={July},
publisher={Springer}
}
PyEPO
(PyTorch-based End-to-End Predict-then-Optimize Tool) is a Python-based, open-source software that supports modeling and solving predict-then-optimize problems with the linear objective function. The core capability of PyEPO
is to build optimization models with GurobiPy, Pyomo, or any other solvers and algorithms, then embed the optimization model into an artificial neural network for the end-to-end training. For this purpose, PyEPO
implements various methods as PyTorch autograd modules.
The official PyEPO
docs can be found at https://khalil-research.github.io/PyEPO.
Our recent tutorial was at the ACC 2024 conference. You can view the talk slides here.
- 01 Optimization Model: Build up optimization solver
- 02 Optimization Dataset: Generate synthetic data and use optDataset
- 03 Training and Testing: Train and test different approaches
- 04 2D knapsack Solution Visualization: Visualize solutions for knapsack problem
- 05 Warcraft Shortest Path: Use the Warcraft terrains dateset to train shortest path
- 06 Real-World Energy Scheduling: Apply PyEPO to real energy data
- 07 kNN Robust Losses: Use the optDatasetKNN for robust losses
To reproduce the experiments in the original paper, please use the code and follow the instructions in this branch.
- Implement SPO+ [1], DBB [3], NID [7], DPO [4], PFYL [4], NCE [5] and LTR [6], I-MLE [8], and AI-MLE [9].
- Support Gurobi, COPT, and Pyomo API
- Support Parallel computing for optimization solver
- Support solution caching [5] to speed up training
- Support kNN robust loss [10] to improve decision quality
You can download PyEPO
from our GitHub repository.
git clone -b main --depth 1 https://github.com/khalil-research/PyEPO.git
And install it.
pip install PyEPO/pkg/.
The package is now available for installation on PyPI. You can easily install PyEPO
using pip by running the following command:
pip install pyepo
PyEPO
is also available on Anaconda Cloud. If you prefer to use conda for installation, you can install PyEPO
with the following command:
conda install -c pyepo pyepo
#!/usr/bin/env python
# coding: utf-8
import gurobipy as gp
from gurobipy import GRB
import numpy as np
import pyepo
from pyepo.model.grb import optGrbModel
import torch
from torch import nn
from torch.utils.data import DataLoader
# optimization model
class myModel(optGrbModel):
def __init__(self, weights):
self.weights = np.array(weights)
self.num_item = len(weights[0])
super().__init__()
def _getModel(self):
# ceate a model
m = gp.Model()
# varibles
x = m.addVars(self.num_item, name="x", vtype=GRB.BINARY)
# model sense
m.modelSense = GRB.MAXIMIZE
# constraints
m.addConstr(gp.quicksum([self.weights[0,i] * x[i] for i in range(self.num_item)]) <= 7)
m.addConstr(gp.quicksum([self.weights[1,i] * x[i] for i in range(self.num_item)]) <= 8)
m.addConstr(gp.quicksum([self.weights[2,i] * x[i] for i in range(self.num_item)]) <= 9)
return m, x
# prediction model
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(num_feat, num_item)
def forward(self, x):
out = self.linear(x)
return out
if __name__ == "__main__":
# generate data
num_data = 1000 # number of data
num_feat = 5 # size of feature
num_item = 10 # number of items
weights, x, c = pyepo.data.knapsack.genData(num_data, num_feat, num_item,
dim=3, deg=4, noise_width=0.5, seed=135)
# init optimization model
optmodel = myModel(weights)
# init prediction model
predmodel = LinearRegression()
# set optimizer
optimizer = torch.optim.Adam(predmodel.parameters(), lr=1e-2)
# init SPO+ loss
spop = pyepo.func.SPOPlus(optmodel, processes=1)
# build dataset
dataset = pyepo.data.dataset.optDataset(optmodel, x, c)
# get data loader
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# training
num_epochs = 10
for epoch in range(num_epochs):
for data in dataloader:
x, c, w, z = data
# forward pass
cp = predmodel(x)
loss = spop(cp, c, w, z)
# backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
# eval
regret = pyepo.metric.regret(predmodel, optmodel, dataloader)
print("Regret on Training Set: {:.4f}".format(regret))
- [1] Elmachtoub, A. N., & Grigas, P. (2021). Smart “predict, then optimize”. Management Science.
- [2] Mandi, J., Stuckey, P. J., & Guns, T. (2020). Smart predict-and-optimize for hard combinatorial optimization problems. In Proceedings of the AAAI Conference on Artificial Intelligence.
- [3] Vlastelica, M., Paulus, A., Musil, V., Martius, G., & Rolínek, M. (2019). Differentiation of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175.
- [4] Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 33, 9508-9519.
- [5] Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
- [6] Mandi, J., Bucarey, V., Mulamba, M., & Guns, T. (2022). Decision-focused learning: through the lens of learning to rank. Proceedings of the 39th International Conference on Machine Learning.
- [7] Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov, V., & Martius, G. (2022). Backpropagation through combinatorial algorithms: Identity with projection works. arXiv preprint arXiv:2205.15213.
- [8] Niepert, M., Minervini, P., & Franceschi, L. (2021). Implicit MLE: backpropagating through discrete exponential family distributions. Advances in Neural Information Processing Systems, 34, 14567-14579.
- [9] Minervini, P., Franceschi, L., & Niepert, M. (2023, June). Adaptive perturbation-based gradient estimation for discrete latent variable models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 8, pp. 9200-9208).
- [10] Schutte, N., Postek, K., & Yorke-Smith, N. (2023). Robust Losses for Decision-Focused Learning. arXiv preprint arXiv:2310.04328.