This repository is the official implementation of the IJCAI 2023 paper "Video Frame Interpolation with Densely Queried Bilateral Correlation". [paper]
torch
is necessary. The code has been developed withtorch1.12.1
.- Install other requirements as:
pip install -r requirements.txt
Download our pretrained model.
Download Vimeo90K dataset.
Download SNU_FILM dataset.
Download UCF101 dataset.
Download MiddleBury Other dataset.
Make your downloaded files structured like below:
.
├── configs
├── datas
├── datasets
│ ├── middlebury
│ │ ├── other-data
│ │ └── other-gt-interp
│ ├── snu_film
│ │ ├── test
│ │ ├── test-easy.txt
│ │ ├── test-extreme.txt
│ │ ├── test-hard.txt
│ │ └── test-medium.txt
│ ├── ucf101
│ │ ├── 1
│ │ ├── 1001
│ │ ...
│ │ ├── 981
│ │ └── 991
│ └── vimeo_triplet
│ ├── readme.txt
│ ├── sequences
│ ├── tri_testlist.txt
│ └── tri_trainlist.txt
├── pretrained
│ └── 510000.pth
├── experiments
├── losses
├── models
├── utils
├── validate
├── train.py
├── test.py
└── val.py
Run benchmarking by following commands:
python val.py --config configs/benchmarking/vimeo.yaml --gpu_id 0
python val.py --config configs/benchmarking/middlebury.yaml --gpu_id 0
python val.py --config configs/benchmarking/ucf101.yaml --gpu_id 0
python val.py --config configs/benchmarking/snu_film.yaml --gpu_id 0
To enable the augmented test ("Ours-Aug" in the paper), uncomment the val_aug: [T,R]
line in the configuration files.
The model was trained on the Vimeo90K-triplet training split.
Run the following command for training:
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port 9999 train.py --config configs/train.yaml
First specify the path of the model weights in configs/test.yaml
.
Then you can test the model on a customized image pair as:
python test.py --config configs/test.yaml --im0 <path to im0> --im1 <path to im1> --output_dir <path to output folder>
@inproceedings{ijcai2023p198,
title = {Video Frame Interpolation with Densely Queried Bilateral Correlation},
author = {Zhou, Chang and Liu, Jie and Tang, Jie and Wu, Gangshan},
booktitle = {Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, {IJCAI-23}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
editor = {Edith Elkind},
pages = {1786--1794},
year = {2023},
month = {8},
note = {Main Track},
doi = {10.24963/ijcai.2023/198},
url = {https://doi.org/10.24963/ijcai.2023/198},
}