-
Notifications
You must be signed in to change notification settings - Fork 214
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merged in feature/empirical_norm (pull request #7)
Feature/empirical norm Approved-by: Nikita Rudin Approved-by: Marko Bjelonic
- Loading branch information
Showing
2 changed files
with
150 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# MIT License | ||
# | ||
# Copyright (c) 2020 Preferred Networks, Inc. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
import numpy as np | ||
|
||
import torch | ||
from torch import nn | ||
|
||
|
||
class EmpiricalNormalization(nn.Module): | ||
"""Normalize mean and variance of values based on empirical values. | ||
Args: | ||
shape (int or tuple of int): Shape of input values except batch axis. | ||
batch_axis (int): Batch axis. | ||
eps (float): Small value for stability. | ||
dtype (dtype): Dtype of input values. | ||
until (int or None): If this arg is specified, the link learns input values until the sum of batch sizes | ||
exceeds it. | ||
update_obs_norm (bool): If true, learns updates mean and variance | ||
""" | ||
|
||
def __init__( | ||
self, | ||
shape, | ||
batch_axis=0, | ||
eps=1e-2, | ||
dtype=np.float32, | ||
until=None, | ||
clip_threshold=None, | ||
update_obs_norm=True, | ||
): | ||
super(EmpiricalNormalization, self).__init__() | ||
dtype = np.dtype(dtype) | ||
self.batch_axis = batch_axis | ||
self.eps = eps | ||
self.until = until | ||
self.clip_threshold = clip_threshold | ||
self.register_buffer( | ||
"_mean", | ||
torch.tensor(np.expand_dims(np.zeros(shape, dtype=dtype), batch_axis)), | ||
) | ||
self.register_buffer( | ||
"_var", | ||
torch.tensor(np.expand_dims(np.ones(shape, dtype=dtype), batch_axis)), | ||
) | ||
self.register_buffer("count", torch.tensor(0)) | ||
self.in_features = shape[0] | ||
|
||
# cache | ||
self._cached_std_inverse = torch.tensor(np.expand_dims(np.ones(shape, dtype=dtype), batch_axis)) | ||
self._is_std_cached = False | ||
self._is_training = update_obs_norm | ||
|
||
@property | ||
def mean(self): | ||
return torch.squeeze(self._mean, self.batch_axis).clone() | ||
|
||
@property | ||
def std(self): | ||
return torch.sqrt(torch.squeeze(self._var, self.batch_axis)).clone() | ||
|
||
@property | ||
def _std_inverse(self): | ||
if self._is_std_cached is False: | ||
self._cached_std_inverse = (self._var + self.eps) ** -0.5 | ||
|
||
return self._cached_std_inverse | ||
|
||
@torch.jit.unused | ||
@torch.no_grad() | ||
def experience(self, x): | ||
"""Learn input values without computing the output values of them""" | ||
|
||
if self.until is not None: | ||
if self.count >= self.until: | ||
return | ||
|
||
count_x = x.shape[self.batch_axis] | ||
if count_x == 0: | ||
return | ||
|
||
self.count += count_x | ||
rate = count_x / self.count.float() | ||
assert rate > 0 | ||
assert rate <= 1 | ||
|
||
var_x = torch.var(x, dim=self.batch_axis, unbiased=False, keepdim=True) | ||
mean_x = torch.mean(x, dim=self.batch_axis, keepdim=True) | ||
delta_mean = mean_x - self._mean | ||
self._mean += rate * delta_mean | ||
self._var += rate * (var_x - self._var + delta_mean * (mean_x - self._mean)) | ||
|
||
# clear cache | ||
self._is_std_cached = False | ||
|
||
def forward(self, x): | ||
"""Normalize mean and variance of values based on emprical values. | ||
Args: | ||
x (ndarray or Variable): Input values | ||
Returns: | ||
ndarray or Variable: Normalized output values | ||
""" | ||
|
||
if self._is_training: | ||
self.experience(x) | ||
|
||
if not x.is_cuda: | ||
self._is_std_cached = False | ||
normalized = (x - self._mean) * self._std_inverse | ||
if self.clip_threshold is not None: | ||
normalized = torch.clamp(normalized, -self.clip_threshold, self.clip_threshold) | ||
if not x.is_cuda: | ||
self._is_std_cached = False | ||
return normalized | ||
|
||
@torch.jit.unused | ||
def inverse(self, y): | ||
std = torch.sqrt(self._var + self.eps) | ||
return y * std + self._mean | ||
|
||
def load_numpy(self, mean, var, count, device="cpu"): | ||
self._mean = torch.from_numpy(np.expand_dims(mean, self.batch_axis)).to(device) | ||
self._var = torch.from_numpy(np.expand_dims(var, self.batch_axis)).to(device) | ||
self.count = torch.tensor(count).to(device) |