IFAA is a novel approach to make inference on the association of covariates with the absolute abundance (AA) of microbiome in an ecosystem.
# install from GitHub:
devtools::install_github("gitlzg/IFAA")
Use sample datasets to run IFAA()
function.
# Detailed instructions on the package are provided in the manual and vignette
library(IFAA)
data(dataM)
data(dataC)
results <- IFAA(MicrobData = dataM,
CovData = dataC,
linkIDname = "id",
testCov = c("v1", "v2"),
ctrlCov = c("v3"),
nRef = 4,
nPermu = 4,
bootB = 5)
Once the analysis is done, you can extract the regression coefficients along with 95% confidence intervals using this command:
results$analysisResults$estByCovList
The function can also take csv or tsv data files directly by reading the file directory paths using the first two arguments:
M="pathToTheCsvFile/microbiomeData.csv"
# or
M="pathToTheTsvFile/microbiomeData.tsv"
C="pathToTheCsvFile/covariatesData.csv"
# or
C="pathToTheTsvFile/covariatesData.tsv"
results=IFAA(MicrobData=M,CovData=C,...)
Use sample datasets to run MZILN()
function.
results <- MZILN(MicrobData = dataM,
CovData = dataC,
linkIDname = "id",
allCov = c("v1","v2","v3"),
refTaxa=c("rawCount11")
)
Regression results including confidence intervals can be extracted in the following way:
results$analysisResults$estByRefTaxaList$rawCount11$estByCovList
-
Zhigang Li, Lu Tian, A. James O'Malley, Margaret R. Karagas, Anne G. Hoen, Brock C. Christensen, Juliette C. Madan, Quran Wu, Raad Z. Gharaibeh, Christian Jobin, Hongzhe Li (2020) IFAA: Robust association identification and Inference For Absolute Abundance in microbiome analyses. arXiv:1909.10101v3
-
Zhigang Li, Katherine Lee, Margaret Karagas, Juliette Madan, Anne Hoen, James O’Malley and Hongzhe Li (2018 ) Conditional regression based on a multivariate zero-inflated logistic normal model for modeling microbiome data. Statistics in Biosciences 10(3):587-608