-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #468 from lsst/tickets/DM-40164
DM-40164: Add script to update baseline QE curves for lsstCam in obs_lsst_data
- Loading branch information
Showing
1 changed file
with
359 additions
and
0 deletions.
There are no files selected for viewing
359 changes: 359 additions & 0 deletions
359
python/lsst/obs/lsst/script/rewrite_lsstcam_qe_files_DM-40164.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,359 @@ | ||
# This file is part of obs_lsst. | ||
# | ||
# Developed for the LSST Data Management System. | ||
# This product includes software developed by the LSST Project | ||
# (https://www.lsst.org). | ||
# See the COPYRIGHT file at the top-level directory of this distribution | ||
# for details of code ownership. | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
|
||
# This script is a record of a one-time run for DM-40164. | ||
# See obs_lsst_data lsstCam/transmission_sensor/README.md | ||
# for details. | ||
|
||
|
||
import astropy.units as u | ||
from astropy.table import Table, QTable | ||
import re | ||
import os | ||
import dateutil.parser | ||
import numpy as np | ||
from scipy.interpolate import interp1d | ||
from scipy.optimize import leastsq | ||
import copy | ||
|
||
import lsst.utils | ||
from lsst.meas.algorithms.simple_curve import AmpCurve | ||
import lsst.afw.math | ||
|
||
|
||
class SplineFitter: | ||
"""Simple spline fitter to adjust rafts. | ||
Parameters | ||
---------- | ||
nodes : `np.ndarray` | ||
Node wavelengths. | ||
wavelengths : `np.ndarray` | ||
Wavelengths (nm). | ||
throughput_obs : `np.ndarray` | ||
Observed throughput (questionable raft median). | ||
throughput_ref : `np.ndarray` | ||
Reference throughput (good raft median). | ||
""" | ||
def __init__(self, nodes, wavelengths, throughput_obs, throughput_ref): | ||
self._nodes = nodes | ||
self._wavelengths = wavelengths | ||
self._throughput_obs = throughput_obs | ||
self._throughput_ref = throughput_ref | ||
|
||
@staticmethod | ||
def compute_ratio_model(nodes, pars, wls, tput_obs, tput_ref, return_spline=False): | ||
"""Compute the ratio between model and observed. | ||
Parameters | ||
---------- | ||
nodes : `np.ndarray` | ||
Spline nodes. | ||
pars : `np.ndarray` | ||
Spline parameters. | ||
wls : `np.ndarray` | ||
Wavelengths. | ||
tput_obs : `np.ndarray` | ||
Observed throughput. | ||
tput_ref : `np.ndarray` | ||
Reference throughput. | ||
return_spline : `bool`, optional | ||
Return spline interpolation object? | ||
Returns | ||
------- | ||
ratio_model : `np.ndarray` | ||
Ratio between model and observed. | ||
spl : `lsst.afw.math.thing` | ||
Spline interpolator (returns if return_spline=True). | ||
""" | ||
spl = lsst.afw.math.makeInterpolate( | ||
nodes, | ||
pars, | ||
lsst.afw.math.stringToInterpStyle("AKIMA_SPLINE"), | ||
) | ||
|
||
model = spl.interpolate(wls) | ||
ratio = (tput_obs * model) / tput_ref | ||
|
||
if return_spline: | ||
return ratio, spl | ||
else: | ||
return ratio | ||
|
||
def fit(self, p0): | ||
"""Fit the spline function. | ||
Parameters | ||
---------- | ||
p0 : `np.ndarray` | ||
Array of starting parameters. | ||
Returns | ||
------- | ||
pars : `np.ndarray` | ||
Best fit spline parameters. | ||
""" | ||
params, cov_params, _, msg, ierr = leastsq( | ||
self, | ||
p0, | ||
full_output=True, | ||
ftol=1e-5, | ||
maxfev=12000, | ||
) | ||
|
||
return params | ||
|
||
def __call__(self, pars): | ||
"""Compute the residuals for leastsq. | ||
Parameters | ||
---------- | ||
pars : `np.ndarray` | ||
Spline parameters. | ||
Returns | ||
------- | ||
residuals : `np.ndarray` | ||
Fit residuals. | ||
""" | ||
ratio_model = self.compute_ratio_model( | ||
self._nodes, | ||
pars, | ||
self._wavelengths, | ||
self._throughput_obs, | ||
self._throughput_ref, | ||
) | ||
return ratio_model - 1.0 | ||
|
||
|
||
debug_display = False | ||
|
||
data_path = lsst.utils.getPackageDir("obs_lsst_data") | ||
transmission_path = os.path.join(data_path, "lsstCam", "transmission_sensor") | ||
parquet_file = os.path.join(transmission_path, "qe_raft_allvalues_nircorrected_20230725.parquet") | ||
parquet_file_update = os.path.join( | ||
transmission_path, | ||
"qe_raft_allvalues_nircorrected_20230725_adjust.parquet", | ||
) | ||
|
||
valid_start = "1970-01-01T00:00:00" | ||
valid_date = dateutil.parser.parse(valid_start) | ||
datestr = ''.join(re.split(r'[:-]', valid_date.isoformat())) | ||
|
||
data = Table.read(parquet_file) | ||
|
||
# Code to do adjustments of questionable rafts. | ||
questionable_rafts = ["R03", "R11", "R21", "R32", "R42"] | ||
|
||
e2v_rafts = ["R11", "R12", "R13", "R14", | ||
"R21", "R22", "R23", "R24", | ||
"R30", "R31", "R32", "R33", "R34"] | ||
itl_rafts = ["R01", "R02", "R03", | ||
"R10", | ||
"R20", | ||
"R41", "R42", "R43"] | ||
|
||
n_amp_per_det = 16 | ||
n_det_per_raft = 9 | ||
|
||
# Nodes chosen to cover the wavelength range of the QE curve data. | ||
# The number of nodes is chosen to be large enough to make the | ||
# corrections "well-matched" to the template. | ||
nodes = np.linspace(320.0, 1099.0, 40) | ||
|
||
# We will do all fitting at a standardized set of wavelengths. | ||
wavelengths = np.linspace(np.min(nodes), np.max(nodes), 1000) | ||
|
||
for det_type in ["e2v", "itl"]: | ||
if det_type == "e2v": | ||
rafts = e2v_rafts | ||
else: | ||
rafts = itl_rafts | ||
|
||
tput_amps = np.zeros((len(wavelengths), n_amp_per_det*n_det_per_raft*len(rafts))) | ||
tput_amps[:, :] = np.nan | ||
|
||
counter = 0 | ||
|
||
for raft in rafts: | ||
if raft in questionable_rafts: | ||
continue | ||
|
||
raft_use, = np.where((data["bay"] == raft) & (data["seg"] != "Ave")) | ||
|
||
det_amps = [] | ||
for row in data[raft_use]: | ||
det_amps.append(row["bay"] + row["slot"] + row["seg"]) | ||
det_amps = np.array(det_amps) | ||
unique_det_amps = np.unique(det_amps) | ||
|
||
for i, det_amp in enumerate(unique_det_amps): | ||
amp_use, = np.where(det_amps == det_amp) | ||
|
||
interp = interp1d( | ||
data["wl"][raft_use][amp_use], | ||
data["qecorr"][raft_use][amp_use], | ||
bounds_error=False, | ||
fill_value=0.0, | ||
) | ||
tput_amps[:, counter] = interp(wavelengths) | ||
|
||
counter += 1 | ||
|
||
if det_type == "e2v": | ||
tput_e2v_median = np.nanmedian(tput_amps, axis=1) | ||
else: | ||
tput_itl_median = np.nanmedian(tput_amps, axis=1) | ||
|
||
# Compute the median for each questionable raft. | ||
questionable_throughputs = {} | ||
|
||
for raft in questionable_rafts: | ||
counter = 0 | ||
|
||
tput_amps = np.zeros((len(wavelengths), n_amp_per_det*n_det_per_raft)) | ||
|
||
raft_use, = np.where((data["bay"] == raft) & (data["seg"] != "Ave")) | ||
|
||
det_amps = [] | ||
for row in data[raft_use]: | ||
det_amps.append(row["bay"] + row["slot"] + row["seg"]) | ||
det_amps = np.array(det_amps) | ||
unique_det_amps = np.unique(det_amps) | ||
|
||
for i, det_amp in enumerate(unique_det_amps): | ||
amp_use, = np.where(det_amps == det_amp) | ||
|
||
interp = interp1d( | ||
data["wl"][raft_use][amp_use], | ||
data["qecorr"][raft_use][amp_use], | ||
bounds_error=False, | ||
fill_value=0.0, | ||
) | ||
tput_amps[:, counter] = interp(wavelengths) | ||
|
||
counter += 1 | ||
|
||
questionable_throughputs[raft] = np.nanmedian(tput_amps, axis=1) | ||
|
||
# For each questionable raft, we want to fit some spline nodes. | ||
questionable_spline_correctors = {} | ||
for raft in questionable_rafts: | ||
|
||
if raft in e2v_rafts: | ||
throughput_ref = tput_e2v_median | ||
else: | ||
throughput_ref = tput_itl_median | ||
|
||
fitter = SplineFitter(nodes, wavelengths, questionable_throughputs[raft], throughput_ref) | ||
pars = fitter.fit(np.ones(len(nodes))) | ||
|
||
_, spl = fitter.compute_ratio_model( | ||
nodes, | ||
pars, | ||
wavelengths, | ||
questionable_throughputs[raft], | ||
throughput_ref, | ||
return_spline=True, | ||
) | ||
|
||
if debug_display: | ||
import matplotlib.pyplot as plt | ||
|
||
corrected = np.array(spl.interpolate(wavelengths) * questionable_throughputs[raft]) | ||
|
||
plt.clf() | ||
plt.plot(wavelengths, questionable_throughputs[raft], 'r-', label="Questionable") | ||
plt.plot(wavelengths, throughput_ref, "b-", label="Reference") | ||
plt.plot(wavelengths, corrected, "m-", label="Corrected") | ||
plt.legend() | ||
plt.title(f"Raft = {raft}") | ||
plt.show() | ||
|
||
questionable_spline_correctors[raft] = spl | ||
|
||
det_nums = np.unique(data["idet"]) | ||
|
||
data_update = copy.copy(data) | ||
|
||
for det_num in det_nums: | ||
det_use, = np.where((data["idet"] == det_num) & (data["seg"] != "Ave")) | ||
slot = data["slot"][det_use[0]] | ||
bay = data["bay"][det_use[0]] | ||
|
||
wavelength = np.array(data["wl"][det_use]) | ||
efficiency = np.array(data["qecorr"][det_use]) | ||
if bay in questionable_rafts: | ||
# Fix this up with spline. | ||
spl = questionable_spline_correctors[bay] | ||
efficiency *= spl.interpolate(wavelength) | ||
|
||
data_update["qecorr"][det_use][:] = efficiency | ||
|
||
curve_table = QTable( | ||
{ | ||
"amp_name": np.array(data["seg"][det_use]), | ||
"wavelength": wavelength * u.nanometer, | ||
"efficiency": efficiency * u.percent, | ||
} | ||
) | ||
curve = AmpCurve.fromTable(curve_table) | ||
|
||
out_path = os.path.join(transmission_path, bay.lower() + "_" + slot.lower()) | ||
os.makedirs(out_path, exist_ok=True) | ||
|
||
out_file = os.path.join(out_path, datestr + ".ecsv") | ||
|
||
curve_table.meta.update( | ||
{ | ||
"CALIBDATE": valid_start, | ||
"INSTRUME": "LSSTCAM", | ||
"OBSTYPE": "transmission_sensor", | ||
"TYPE": "transmission_sensor", | ||
"DETECTOR": det_num, | ||
"PARQUETFILE": os.path.basename(parquet_file), | ||
"CALIBCLS": "lsst.ip.isr.IntermediateSensorTransmissionCurve", | ||
} | ||
) | ||
curve_table.meta["CALIB_ID"] = ( | ||
f"raftName={bay} detectorName={slot} " | ||
f"detector={det_num} calibDate={valid_start} " | ||
f"ccd={det_num} ccdnum={det_num} filter=None" | ||
) | ||
|
||
# We need to remove any previous file if it is there. | ||
if os.path.isfile(out_file): | ||
os.remove(out_file) | ||
|
||
curve.writeText(out_file) | ||
|
||
# And update the average. | ||
det_use_ave, = np.where((data["idet"] == det_num) & (data["seg"] == "Ave")) | ||
wavelength_ave = np.array(data["wl"][det_use_ave]) | ||
efficiency_ave = np.array(data["qecorr"][det_use_ave]) | ||
if bay in questionable_rafts: | ||
spl = questionable_spline_correctors[bay] | ||
efficiency_ave *= spl.interpolate(wavelength_ave) | ||
|
||
data_update["qecorr"][det_use_ave][:] = efficiency_ave | ||
|
||
data_update.write(parquet_file_update, overwrite=True) |