Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dilation for Fully Convolutional Networks #63

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 26 additions & 9 deletions efficientnet_pytorch/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,12 @@ def __init__(self, block_args, global_params):
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
d = self._block_args.dilation
if d is None:
d = 1
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
kernel_size=k, stride=s, bias=False, dilation=d)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

# Squeeze and Excitation layer, if desired
Expand Down Expand Up @@ -131,21 +134,35 @@ def __init__(self, blocks_args=None, global_params=None):
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

dilate_count = 0
dilations = []
# determine blocks to dilate from last to first
for block_args in reversed(self._blocks_args):
if (block_args.stride == [2] or block_args.stride == [2, 2]) and dilate_count < self._global_params.num_dilation:
dilations += [True]
dilate_count += 1
else:
dilations += [False]
# Organize from first to last
dilations.reverse()

# Build blocks
self._blocks = nn.ModuleList([])
for block_args in self._blocks_args:

for block_args, dilate in zip(self._blocks_args, dilations):
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters, self._global_params),
output_filters=round_filters(block_args.output_filters, self._global_params),
num_repeat=round_repeats(block_args.num_repeat, self._global_params)
num_repeat=round_repeats(block_args.num_repeat, self._global_params),
stride=[1, 1] if dilate else block_args.stride,
dilation=[2, 2] if dilate else block_args.dilation
)

# The first block needs to take care of stride and filter size increase.
self._blocks.append(MBConvBlock(block_args, self._global_params))
if block_args.num_repeat > 1:
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1, dilation=1)
for _ in range(block_args.num_repeat - 1):
self._blocks.append(MBConvBlock(block_args, self._global_params))

Expand Down Expand Up @@ -206,8 +223,8 @@ def from_name(cls, model_name, override_params=None):
return cls(blocks_args, global_params)

@classmethod
def from_pretrained(cls, model_name, num_classes=1000, in_channels = 3):
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
def from_pretrained(cls, model_name, num_classes=1000, in_channels=3, num_dilation=0):
model = cls.from_name(model_name, override_params={'num_classes': num_classes, 'num_dilation': num_dilation})
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
if in_channels != 3:
Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size)
Expand All @@ -216,8 +233,8 @@ def from_pretrained(cls, model_name, num_classes=1000, in_channels = 3):
return model

@classmethod
def from_pretrained(cls, model_name, num_classes=1000):
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
def from_pretrained(cls, model_name, num_classes=1000, num_dilation=0):
model = cls.from_name(model_name, override_params={'num_classes': num_classes, 'num_dilation': num_dilation})
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))

return model
Expand Down
13 changes: 8 additions & 5 deletions efficientnet_pytorch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,12 @@
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate',
'num_classes', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size'])
'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size', 'num_dilation'])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'stride', 'se_ratio'])
'expand_ratio', 'id_skip', 'stride', 'se_ratio', 'dilation'])

# Change namedtuple defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
Expand Down Expand Up @@ -202,7 +202,8 @@ def _decode_block_string(block_string):
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
stride=[int(options['s'][0])])
stride=[int(options['s'][0])],
dilation=[int(options['d'][0]), int(options['d'][1])] if 'd' in options else [1, 1])

@staticmethod
def _encode_block_string(block):
Expand All @@ -213,7 +214,8 @@ def _encode_block_string(block):
's%d%d' % (block.strides[0], block.strides[1]),
'e%s' % block.expand_ratio,
'i%d' % block.input_filters,
'o%d' % block.output_filters
'o%d' % block.output_filters,
'd%d%d' % (block.dilation[0], block.dilation[1]),
]
if 0 < block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
Expand Down Expand Up @@ -250,7 +252,7 @@ def encode(blocks_args):


def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2,
drop_connect_rate=0.2, image_size=None, num_classes=1000):
drop_connect_rate=0.2, image_size=None, num_classes=1000, num_dilation=0):
""" Creates a efficientnet model. """

blocks_args = [
Expand All @@ -273,6 +275,7 @@ def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.
depth_divisor=8,
min_depth=None,
image_size=image_size,
num_dilation=num_dilation
)

return blocks_args, global_params
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,8 @@ def _decode_block_string(self, block_string):
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
strides=[int(options['s'][0]), int(options['s'][1])])
strides=[int(options['s'][0]), int(options['s'][1])],
dilation=[int(options['d'][0]), int(options['d'][1])] if 'd' in options else [1, 1])

def _encode_block_string(self, block):
"""Encodes a block to a string."""
Expand All @@ -76,7 +77,8 @@ def _encode_block_string(self, block):
's%d%d' % (block.strides[0], block.strides[1]),
'e%s' % block.expand_ratio,
'i%d' % block.input_filters,
'o%d' % block.output_filters
'o%d' % block.output_filters,
'd%d%d' % (block.dilation[0], block.dilation[1]),
]
if block.se_ratio > 0 and block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
Expand Down Expand Up @@ -134,7 +136,8 @@ def efficientnet(width_coefficient=None,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None)
min_depth=None,
num_dilation=0)
decoder = BlockDecoder()
return decoder.decode(blocks_args), global_params

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'data_format',
'num_classes', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'min_depth', 'drop_connect_rate',
'depth_divisor', 'min_depth', 'drop_connect_rate', 'num_dilation'
])
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)

Expand Down