Welcome to the Smart City Traffic Management system. This project aims to leverage AI and machine learning techniques to optimize and manage traffic flow in a smart city environment.
- Introduction
- Features
- Project Structure
- Setup and Installation
- Usage
- Configuration
- Development
- Testing
- Deployment
- Contributing
- License
This project provides a comprehensive system to manage traffic in a smart city using various machine learning models and APIs. It includes functionalities such as data loading, preprocessing, model training, prediction, monitoring, and visualization through a web application.
- Data Management: Load and preprocess traffic data.
- Machine Learning Models: Train and use supervised, unsupervised, and reinforcement learning models.
- API: Expose endpoints for predictions and data interactions.
- Monitoring: Track model performance and errors.
- Web Application: Visualize traffic data and model predictions on a dashboard.
- Security: Audit and scan for vulnerabilities.
- Continuous Integration/Continuous Deployment: Automated testing and deployment using GitHub Actions.
smart-city-traffic-management/
├── .env
├── .gitignore
├── .pre-commit-config.yaml
├── .github/
│ └── workflows/
│ ├── ci.yml
│ └── cd.yml
├── CHANGELOG.md
├── CONTRIBUTING.md
├── INSTALLATION.md
├── README.md
├── USAGE.md
├── configs/
│ ├── data_config.yaml
│ ├── deployment_config.yaml
│ ├── model_config.yaml
│ └── training_config.yaml
├── deployment/
│ ├── api/
│ │ ├── api_endpoints.go
│ │ ├── api_endpoints.py
│ │ └── requirements.txt
│ └── docker/
│ ├── Dockerfile
│ └── docker-compose.yml
├── docs/
│ ├── README.md
│ ├── CONTRIBUTING.md
│ ├── INSTALLATION.md
│ ├── USAGE.md
│ └── CHANGELOG.md
├── experiments/
│ ├── experiment_1.yaml
│ └── experiment_2.yaml
├── monitoring/
│ ├── logging_config.py
│ ├── error_tracking.py
│ ├── model_monitoring.py
│ └── performance_monitoring.py
├── notebooks/
│ ├── data_preprocessing.ipynb
│ ├── deep_learning.ipynb
│ ├── nlp_analysis.ipynb
│ ├── reinforcement_learning.ipynb
│ ├── supervised_learning.ipynb
│ ├── unsupervised_learning.ipynb
│ └── experiments/
│ └── experiment_analysis.ipynb
├── reports/
│ └── final_report.pdf
├── security/
│ ├── security_audit.py
│ └── vulnerability_scan.py
├── src/
│ ├── data/
│ │ ├── data_loader.py
│ │ ├── data_preprocessing.py
│ │ ├── feature_engineering.py
│ │ └── data_schema.json
│ ├── models/
│ │ ├── supervised/
│ │ │ └── regression_model.py
│ │ ├── unsupervised/
│ │ │ └── clustering_model.py
│ │ ├── reinforcement/
│ │ │ └── rl_agent.py
│ │ └── nlp/
│ │ └── nlp_model.py
│ ├── main.py
│ └── utils/
│ ├── helpers.py
│ └── validators.py
├── setup.py
├── requirements_dev.txt
└── tests/
├── test_api_endpoints.py
├── test_data_loading.py
├── test_integration.py
├── test_model_evaluation.R
├── test_model_evaluation.py
├── test_model_training.py
└── test_end_to_end.py
├── webapp/
│ ├── static/
│ │ ├── app.js
│ │ ├── styles.css
│ │ └── charts.js
│ ├── templates/
│ │ ├── index.html
│ │ └── dashboard.html
│ └── app.py
- Python 3.8 or higher
- Docker
- Git
-
Clone the repository:
git clone https://github.com/your-username/smart-city-traffic-management.git cd smart-city-traffic-management
-
Create and activate a virtual environment:
python -m venv env source env/bin/activate # On Windows use `env\Scripts\activate`
-
Install dependencies:
pip install -r requirements.txt
-
Setup environment variables:
Create a
.env
file in the root directory and add your configurations (example provided). -
Initialize the database:
Ensure your database is set up as per
configs/data_config.yaml
. -
Run migrations (if applicable):
# Example for Flask-Migrate flask db upgrade
-
Start the Flask API server:
python deployment/api/api_endpoints.py
-
Access the API at
http://localhost:8000
.
-
Start the Flask web application:
python webapp/app.py
-
Access the web application at
http://localhost:5000
.
-
Build and run the Docker container:
docker-compose up --build
-
Access the services as configured.
Configuration files are located in the configs/
directory.
- Data Configuration:
configs/data_config.yaml
- Deployment Configuration:
configs/deployment_config.yaml
- Model Configuration:
configs/model_config.yaml
- Training Configuration:
configs/training_config.yaml
-
Install pre-commit:
pip install pre-commit
-
Install the hooks:
pre-commit install
Jupyter notebooks for experimentation and analysis are located in the notebooks/
directory. To run them, start Jupyter:
```bash
jupyter notebook
```bash
pytest
```bash
python security/security_audit.py
python security/vulnerability_scan.py
This project uses GitHub Actions for CI/CD. Workflows are defined in the .github/workflows/
directory.
- CI Workflow:
.github/workflows/ci.yml
- CD Workflow:
.github/workflows/cd.yml
We welcome contributions! Please see the CONTRIBUTING.md for more details on how to get started.