Skip to content

This project evaluates the relationship between YouTube video comment engagement and sentiment and finds that positive sentiment increases engagement.

Notifications You must be signed in to change notification settings

madelinecraft/Understanding-YouTube-User-Engagement

Repository files navigation

Understanding YouTube User Engagement

Summary:

The goal of this project was to understand the relationship between the sentiment of YouTube video comments and the number of "likes" a comment receives. Comments and each comment's number of "likes" were scraped from YouTube and comments were analyzed for sentiment. The results of the analysis showed that the more positively sentimented a comment was, the more "likes" a comment received.

Project Application:

The implication of these findings is that positivity increases engagement. If a platform were interested in increasing engagement, they may wish to build an algorithm that promotes positively sentimented content.

Details of the Analysis:

  • Python was used to access YouTube's API to scrape YouTube video comments and the number of "likes" a comment received. Python was also used to access IBM Watson's Natural Language Understanding tool, which analyzed each comment for sentiment. Both Python scripts (“Channel1 - 6.25.19.py” and “NLU_youtube_comments.ipynb”, respectively) are stored above.

  • SAS was used to fit the statistical model of interest, and the SAS script “CMN Project.sas” is stored above.

  • A Powerpoint file summarizes the project and is stored above.

About

This project evaluates the relationship between YouTube video comment engagement and sentiment and finds that positive sentiment increases engagement.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published