Skip to content

majdiAlKotamy/Data-Cleaning-Project-Sample

Repository files navigation

PandasDataCleaning

Data cleaning is an essential step in data analysis to ensure data quality and reliable results. Python's Pandas library offers powerful tools for cleaning and manipulating tabular data. Here's a simplified overview of common data cleaning tasks using Pandas:

1. Importing Libraries and Data:

  • Import Pandas library using import pandas as pd.
  • Load your data using pd.read_csv("your_file.csv") for CSV files (adjust for other file formats, excel..). This creates a Pandas DataFrame object.

2. Exploring the Data:

  • Use df.head() and df.tail() to view the first and last few rows.
  • Get basic information about the data using df.info().
  • Check for missing values using df.isnull().sum().

3. Handling Missing Values:

  • Drop rows with missing values using df.dropna().
  • Impute missing values with statistical methods (e.g., df.fillna(df.mean())) or custom logic.

4. Removing Duplicates:

  • Identify and remove duplicate rows using df.drop_duplicates().

5. Cleaning Specific Columns:

  • Formatting: Use string methods like df['column_name'].str.strip() to remove leading/trailing spaces.
  • Fixing inconsistencies: Replace unwanted characters/values using df['column_name'].str.replace().
  • Working with regex
  • Converting data types: Use df['column_name'] = pd.to_numeric(df['column_name']) to convert strings to numeric data types (if applicable).

6. Saving the Cleaned Data:

  • Save the cleaned DataFrame to a new file using df.to_csv("cleaned_data.csv").

About

Data Cleaning Project using Python Pandas library

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published