Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HDBSCAN clustering method added for Bragg peaks inferred from DL model #17

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 79 additions & 11 deletions diffraction/WISH/bragg-detect/cnn/BraggDetectCNN.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,14 @@
from tqdm import tqdm
from Diffraction.single_crystal.base_sx import BaseSX
import time
from enum import Enum
from sklearn.cluster import HDBSCAN
from sklearn.metrics import silhouette_score

class Clustering(Enum):
QLab = 1
HDBSCAN = 2


class BraggDetectCNN:
"""
Expand All @@ -19,7 +27,7 @@ class BraggDetectCNN:

# 2) Create a peaks workspace containing bragg peaks detected with a confidence greater than conf_threshold
cnn_bragg_peaks_detector = BraggDetectCNN(model_weights_path=cnn_weights_path, batch_size=64, workers=0, iou_threshold=0.001)
cnn_bragg_peaks_detector.find_bragg_peaks(workspace="WISH00042730", conf_threshold=0.0, q_tol=0.05)
cnn_bragg_peaks_detector.find_bragg_peaks(workspace="WISH00042730", conf_threshold=0.0, clustering="QLab", q_tol=0.05)
"""

def __init__(self, model_weights_path, batch_size=64, workers=0, iou_threshold=0.001):
Expand All @@ -37,28 +45,83 @@ def __init__(self, model_weights_path, batch_size=64, workers=0, iou_threshold=0
self.iou_threshold = iou_threshold


def find_bragg_peaks(self, workspace, output_ws_name="CNN_Peaks", conf_threshold=0.0, q_tol=0.05):
def find_bragg_peaks(self, workspace, output_ws_name="CNN_Peaks", conf_threshold=0.0, clustering=Clustering.QLab.name, **kwargs):
"""
Find bragg peaks using the pre trained FasterRCNN model and create a peaks workspace
:param workspace: Workspace name or the object of Workspace from WISH, ex: "WISH0042730"
:param output_ws_name: Name of the peaks workspace
:param conf_threshold: Confidence threshold to filter peaks inferred from RCNN
:param q_tol: qlab tolerance to remove duplicate peaks
:param clustering: name of clustering method(QLab or HDBSCAN). Default is QLab
:param kwargs: variable keyword params for clustering methods
warunawickramasingha marked this conversation as resolved.
Show resolved Hide resolved
"""
start_time = time.time()
data_set, predicted_indices = self._do_cnn_inferencing(workspace)

filtered_indices = predicted_indices[predicted_indices[:, -1] > conf_threshold]
filtered_indices_rounded = np.round(filtered_indices[:, :-1]).astype(int)
peaksws = createPeaksWorkspaceFromIndices(data_set.get_workspace(), output_ws_name, filtered_indices_rounded, data_set.get_ws_as_3d_array())

#Do Clustering
print(f"Starting peak clustering with {clustering} method..")
clustered_peaks = self._do_peak_clustering(filtered_indices, clustering, **kwargs)
cluster_indices_rounded = np.round(clustered_peaks[:, :3]).astype(int)
peaksws = createPeaksWorkspaceFromIndices(data_set.get_workspace(), output_ws_name, cluster_indices_rounded, data_set.get_ws_as_3d_array())
for ipk, pk in enumerate(peaksws):
pk.setIntensity(filtered_indices[ipk, -1])
pk.setIntensity(clustered_peaks[ipk, -1])

if clustering == Clustering.QLab.name:
#Filter peaks by qlab
clustering_params = {"q_tol": 0.05 }
clustering_params.update(kwargs)
BaseSX.remove_duplicate_peaks_by_qlab(peaksws, **clustering_params)

print(f"Number of peaks after clustering is = {len(peaksws)}")

#Filter duplicates by qlab
BaseSX.remove_duplicate_peaks_by_qlab(peaksws, q_tol)
data_set.delete_rebunched_ws()
print(f"Bragg peaks finding from FasterRCNN model is completed in {time.time()-start_time} seconds!")
print(f"Bragg peaks finding from FasterRCNN model is completed in {time.time()-start_time:.2f} seconds!")


def _do_peak_clustering(self, detected_peaks, clustering, **kwargs):
print(f"Number of peaks before clustering = {len(detected_peaks)}")
if clustering == Clustering.HDBSCAN.name:
return self._do_hdbscan_clustering(detected_peaks, **kwargs)
else:
return detected_peaks


def _do_hdbscan_clustering(self, peakdata, keep_ignored_labels=True, **kwargs):
"""
Do HDBSCAN clustering over the inferred peak coordinates
:param peakata: np array containig the inferred peak coordinates
:param keep_ignored_labels: whether to include the unclustered peaks in final result.
default is True, can be set to False via passing "keep_ignored_labels": False in kwargs
:param kwargs: variable keyword params to be passed to HDBSCAN algorithm
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.HDBSCAN.html
"""
peak_indices = np.delete(peakdata, [3,4], axis=1)
if ("keep_ignored_labels" in kwargs):
keep_ignored_labels = kwargs.pop("keep_ignored_labels")

hdbscan_params = {"min_cluster_size": 2,
"min_samples": 2,
"store_centers" : "medoid",
"algorithm": "auto",
"cluster_selection_method": "eom",
"metric": "euclidean"
}
hdbscan_params.update(kwargs)
hdbscan = HDBSCAN(**hdbscan_params)
hdbscan.fit(peak_indices)
print(f"Silhouette score of the clusters={silhouette_score(peak_indices, hdbscan.labels_)}")

if keep_ignored_labels:
selected_peak_indices = np.concatenate((hdbscan.medoids_, peak_indices[np.where(hdbscan.labels_==-1)]), axis=0)
else:
selected_peak_indices = hdbscan.medoids_
confidence = []
for peak in selected_peak_indices:
confidence.append(peakdata[np.where((peak_indices == peak).all(axis=1))[0].item(), -1])
return np.column_stack((selected_peak_indices, confidence))


def _do_cnn_inferencing(self, workspace):
data_set = WISHWorkspaceDataSet(workspace)
data_loader = tc.utils.data.DataLoader(data_set, batch_size=self.batch_size, shuffle=False, num_workers=self.workers)
Expand All @@ -71,9 +134,14 @@ def _do_cnn_inferencing(self, workspace):
prediction = self.model([img.to(self.device)])[0]
nms_prediction = self._apply_nms(prediction, self.iou_threshold)
for box, score in zip(nms_prediction['boxes'], nms_prediction['scores']):
box = box.cpu().numpy().astype(int)
tof = (box[0]+box[2])/2
tube_res = (box[1]+box[3])/2
predicted_indices_with_score.append([tube_idx, tube_res.cpu(), tof.cpu(), score.cpu()])

boxsum = np.sum(img[0, box[1]:box[3], box[0]:box[2]].numpy())

predicted_indices_with_score.append([tube_idx, tube_res, tof, boxsum, score.cpu()])

return data_set, np.array(predicted_indices_with_score)


Expand All @@ -98,7 +166,7 @@ def _select_device(self):

def _load_cnn_model_from_weights(self, weights_path):
model = self._get_fasterrcnn_resnet50_fpn(num_classes=2)
model.load_state_dict(tc.load(weights_path, map_location=self.device))
model.load_state_dict(tc.load(weights_path, map_location=self.device, weights_only=True))
return model.to(self.device)


Expand Down
22 changes: 17 additions & 5 deletions diffraction/WISH/bragg-detect/cnn/README.md
Original file line number Diff line number Diff line change
@@ -1,17 +1,29 @@
Bragg Peaks detection using a pre-trained Faster RCNN deep neural network
================

Inorder to use the pre-trained Faster RCNN model inside mantid using an IDAaaS instance, below steps are required.
Inorder to run the pre-trained Faster RCNN model via mantid inside an IDAaaS instance, below steps are required.

* Launch an IDAaaS instance with GPUs from WISH > Wish Single Crystal GPU Advanced
* Launch Mantid workbench nightly from Applications->Software->Mantid->Mantid Workbench Nightly
* Launch an IDAaaS instance with GPUs selected from WISH > Wish Single Crystal GPU Advanced
* From IDAaaS, launch Mantid workbench nightly from Applications->Software->Mantid->Mantid Workbench Nightly
* Download `scriptrepository\diffraction\WISH` directory from mantid's script repository as instructed here https://docs.mantidproject.org/nightly/workbench/scriptrepository.html
* Check whether `<local path>\diffraction\WISH` path is listed under `Python Script Directories` tab from `File->Manage User Directories` of Mantid workbench.
* Below is an example code snippet to test the code. It will create a peaks workspace with the inferred peaks from the cnn and will do a peak filtering using the q_tol provided using `BaseSX.remove_duplicate_peaks_by_qlab`.
* Below is an example code snippet to use the pretrained model for Bragg peak detection. It will create a peaks workspace with the inferred peaks from the model. The valid values for the `clustering` argument are `QLab` or `HDBSCAN`. For `QLab` method the default value of `q_tol=0.05` will be used for `BaseSX.remove_duplicate_peaks_by_qlab` method.
```python
from cnn.BraggDetectCNN import BraggDetectCNN
model_weights = r'/mnt/ceph/auxiliary/wish/BraggDetect_FasterRCNN_Resnet50_Weights_v1.pt'
cnn_peaks_detector = BraggDetectCNN(model_weights_path=model_weights, batch_size=64)
cnn_peaks_detector.find_bragg_peaks(workspace='WISH00042730', output_ws_name="CNN_Peaks", conf_threshold=0.0, q_tol=0.05)
cnn_peaks_detector.find_bragg_peaks(workspace='WISH00042730', output_ws_name="CNN_Peaks", conf_threshold=0.0, clustering="QLab")
warunawickramasingha marked this conversation as resolved.
Show resolved Hide resolved
```
* If the above import is not working, check whether the `<local path>\diffraction\WISH` path is listed under `Python Script Directories` tab from `File->Manage User Directories`.
* Depending on the selected `clustering` method in the above, the user can provide custom parameters using `kwargs` as shown below.
```
kwargs={"q_tol": 0.1}
cnn_peaks_detector.find_bragg_peaks(workspace='WISH00042730', output_ws_name="CNN_Peaks", conf_threshold=0.0, clustering="QLab", **kwargs)

or

kwargs={"cluster_selection_method": "leaf", "algorithm": "brute", "keep_ignored_labels": False}
cnn_peaks_detector.find_bragg_peaks(workspace='WISH00042730', output_ws_name="CNN_Peaks", conf_threshold=0.0, clustering="HDBSCAN", **kwargs)
```
* The documentation for using HDBSCAN can be found here: https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.HDBSCAN.html
* The documentation for using `BaseSX.remove_duplicate_peaks_by_qlab` can be found here: https://docs.mantidproject.org/nightly/techniques/ISIS_SingleCrystalDiffraction_Workflow.html
6 changes: 2 additions & 4 deletions diffraction/WISH/bragg-detect/cnn/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,4 @@
-f https://download.pytorch.org/whl/cu118
torch
torchvision

torch==2.5.1
torchvision==0.20.1
albumentations==1.4.0
tqdm==4.66.3