Skip to content

martibosch/pylandstats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

eec1bbb · Nov 13, 2021
Nov 12, 2021
Nov 4, 2021
Jan 22, 2019
Nov 13, 2021
Nov 13, 2021
Nov 13, 2021
Sep 23, 2019
Jul 15, 2021
Jul 17, 2019
Apr 24, 2021
Jul 10, 2019
Nov 12, 2018
Jul 25, 2019
Sep 20, 2019
Nov 12, 2021
Nov 12, 2021
Nov 13, 2021
Nov 13, 2021
Nov 13, 2021
Nov 13, 2021

Repository files navigation

PyPI version fury.io Conda Downloads Documentation Status Build Status Coverage Status GitHub license

PyLandStats

Open-source Pythonic library to compute landscape metrics within the PyData stack (NumPy, pandas, matplotlib...)

Citation: Bosch M. 2019. "PyLandStats: An open-source Pythonic library to compute landscape metrics". PLOS ONE, 14(12), 1-19. doi.org/10.1371/journal.pone.0225734

Features

  • Read GeoTiff files of land use/cover:

    import pylandstats as pls
    
    ls = pls.Landscape('data/vaud_g100_clc00_V18_5.tif')
    
    ls.plot_landscape(legend=True)

    landscape-vaud

  • Compute pandas data frames of landscape metrics at the patch, class and landscape level:

    class_metrics_df = ls.compute_class_metrics_df(metrics=['proportion_of_landscape', 'edge_density'])
    class_metrics_df
    class_val proportion_of_landscape edge_density
    1 7.702 4.459
    2 92.298 4.459
  • Analyze the spatio-temporal evolution of landscapes:

    input_fnames = [
        'data/vaud_g100_clc00_V18_5.tif',
        'data/vaud_g100_clc06_V18_5a.tif',
        'data/vaud_g100_clc12_V18_5a.tif'
    ]
    
    sta = pls.SpatioTemporalAnalysis(
        input_fnames, metrics=[
            'proportion_of_landscape',
            'edge_density',
            'fractal_dimension_am',
            'landscape_shape_index',
            'shannon_diversity_index'
        ], classes=[1], dates=[2000, 2006, 2012],
    )
    
    fig, axes = plt.subplots(1, 3, figsize=(15, 5))
    for metric, ax in zip(
        ['proportion_of_landscape', 'edge_density', 'fractal_dimension_am'], axes):
        sta.plot_metric(metric, class_val=1, ax=ax)
    fig.suptitle('Class-level metrics (urban)')

    spatiotemporal-analysis

  • Zonal analysis of landscapes

See the documentation and the pylandstats-notebooks repository for a more complete overview.

Installation

The easiest way to install PyLandStats is with conda:

$ conda install -c conda-forge pylandstats

which will install PyLandStats and all of its dependencies. Alternatively, you can install PyLandStats using pip:

$ pip install pylandstats

Nevertheless, note that in order to define zones by vector geometries in ZonalAnalysis, or in order to use the the BufferAnalysis and SpatioTemporalBufferAnalysis classes, PyLandStats requires geopandas, which cannot be installed with pip. If you already have the dependencies for geopandas installed in your system, you might then install PyLandStats with the geo extras as in:

$ pip install pylandstats[geo]

and you will be able to use the aforementioned features (without having to use conda).

Development install

To install a development version of PyLandStats, you can first use conda to create an environment with all the dependencies and activate it as in:

$ conda create -n pylandstats -c conda-forge geopandas matplotlib-base rasterio scipy openblas
$ conda activate pylandstats

and then clone the repository and use pip to install it in development mode

$ git clone https://github.com/martibosch/pylandstats.git
$ cd pylandstats/
$ pip install -e .

Acknowledgments

  • The computation of the adjacency matrix in transonic has been implemented by Pierre Augier (paugier).
  • With the support of the École Polytechnique Fédérale de Lausanne (EPFL)
  • The Corine Land Cover datasets used for the test datasets were produced with funding by the European Union