The environments are from OpenAI Gym. They are as follows:
- FetchReach-v1
- HandReach-v0
- HandManipulateEggFull-v0
- HandManipulateBlockRotateXYZ-v0
- HandManipulatePenRotate-v0
CHER
|-- baselines
|-- cher
|-- config_curriculum.py
|-- ...
|-- her
|-- herebp
DDPG and DDPG+HER are from OpenAI baselines.
DDPG+HEREBP is from EnergyBasedPrioritization. We just add the environments used in the CHER paper with a minor modification.
- python 3.5
- gym 0.12.5
- mujoco-py 2.0.2.0
- baselines 0.1.5
- Scikit-learn 0.21.3
Please install them at first.
cd CHER
python install -e .
Use FetchReach as an example
Note: if use HandManipulate environments, please run with 20 CPU cores.
cd CHER/baselines/cher/experiment/
python train.py --env_name FetchReach-v1 --seed 0 --num_cpu 1 --n_epochs 50 --logdir fetchreachv1/cpu1ep50/alg=DDPG+CHER=/r0
Similar in DDPG, DDPG+HER, DDPG+HEREBP.
Please cite our NeurIPS paper if you use this repository in your publications:
@inproceedings{
fang2019cher,
title={Curriculum-guided Hindsight Experience Replay},
author={Meng Fang and Tianyi Zhou and Yali Du and Lei Han and Zhengyou Zhang},
booktitle={Advances in Neural Information Processing Systems},
year={2019},
}
This browser does not support PDFs. Please download the PDF to view it: Download PDF.
The MIT License