Skip to content

Commit

Permalink
docs(tutorials): update tutorials (#120)
Browse files Browse the repository at this point in the history
Co-authored-by: Xuehai Pan <XuehaiPan@pku.edu.cn>
Co-authored-by: Benjamin-eecs <benjaminliu.eecs@gmail.com>
  • Loading branch information
3 people authored Dec 6, 2022
1 parent b155b15 commit a760c83
Showing 13 changed files with 757 additions and 1,959 deletions.
63 changes: 38 additions & 25 deletions README.md
Original file line number Diff line number Diff line change
@@ -6,13 +6,26 @@
<img src="https://github.com/metaopt/torchopt/raw/HEAD/image/logo-large.png" width="75%" />
</div>

![Python 3.7+](https://img.shields.io/badge/Python-3.7%2B-brightgreen.svg)
[![PyPI](https://img.shields.io/pypi/v/torchopt?logo=pypi)](https://pypi.org/project/torchopt)
![GitHub Workflow Status](https://img.shields.io/github/workflow/status/metaopt/torchopt/Tests?label=tests&logo=github)
[![Documentation Status](https://img.shields.io/readthedocs/torchopt?logo=readthedocs)](https://torchopt.readthedocs.io)
[![Downloads](https://static.pepy.tech/personalized-badge/torchopt?period=total&left_color=grey&right_color=blue&left_text=downloads)](https://pepy.tech/project/torchopt)
[![GitHub Repo Stars](https://img.shields.io/github/stars/metaopt/torchopt?color=brightgreen&logo=github)](https://github.com/metaopt/torchopt/stargazers)
[![License](https://img.shields.io/github/license/metaopt/torchopt?label=license)](#license)
<div align="center">

<a>![Python 3.7+](https://img.shields.io/badge/Python-3.7%2B-brightgreen.svg)</a>
<a href="https://pypi.org/project/torchopt">![PyPI](https://img.shields.io/pypi/v/torchopt?logo=pypi)</a>
<a href="https://github.com/metaopt/torchopt/tree/HEAD/tests">![GitHub Workflow Status](https://img.shields.io/github/workflow/status/metaopt/torchopt/Tests?label=tests&logo=github)</a>
<a href="https://torchopt.readthedocs.io">![Documentation Status](https://img.shields.io/readthedocs/torchopt?logo=readthedocs)</a>
<a href="https://pepy.tech/project/torchopt">![Downloads](https://static.pepy.tech/personalized-badge/torchopt?period=total&left_color=grey&right_color=blue&left_text=downloads)</a>
<a href="https://github.com/metaopt/torchopt/stargazers">![GitHub Repo Stars](https://img.shields.io/github/stars/metaopt/torchopt?color=brightgreen&logo=github)</a>
<a href="https://github.com/metaopt/torchopt/blob/HEAD/LICENSE">![License](https://img.shields.io/github/license/metaopt/torchopt?label=license&logo=)</a>

</div>

<p align="center">
<a href="https://github.com/metaopt/torchopt#installation">Installation</a> |
<a href="https://torchopt.readthedocs.io">Documentation</a> |
<a href="https://github.com/metaopt/torchopt/tree/HEAD/tutorials">Tutorials</a> |
<a href="https://github.com/metaopt/torchopt/tree/HEAD/examples">Examples</a> |
<a href="https://arxiv.org/abs/2211.06934">Paper</a> |
<a href="https://github.com/metaopt/torchopt#citing-torchopt">Citation</a>
</p>

**TorchOpt** is an efficient library for differentiable optimization built upon [PyTorch](https://pytorch.org).
TorchOpt is:
@@ -44,8 +57,8 @@ The README is organized as follows:
- [Examples](#examples)
- [Installation](#installation)
- [Changelog](#changelog)
- [The Team](#the-team)
- [Citing TorchOpt](#citing-torchopt)
- [The Team](#the-team)
- [License](#license)

--------------------------------------------------------------------------------
@@ -136,7 +149,7 @@ We design a bilevel-optimization updating scheme, which can be easily extended t
<img src="image/diffmode.png" width="90%" />
</div>

As shown above, the scheme contains an outer level that has parameters $\phi$ that can be learned end-to-end through the inner level parameters solution $\theta^{\star}(\phi)$ by using the best-response derivatives $\partial \theta^{\star}(\phi) / \partial \phi$.
As shown above, the scheme contains an outer level that has parameters $\phi$ that can be learned end-to-end through the inner level parameters solution $\theta^{\prime}(\phi)$ by using the best-response derivatives $\partial \theta^{\prime}(\phi) / \partial \phi$.
TorchOpt supports three differentiation modes.
It can be seen that the key component of this algorithm is to calculate the best-response (BR) Jacobian.
From the BR-based perspective, existing gradient methods can be categorized into three groups: explicit gradient over unrolled optimization, implicit differentiation, and zero-order gradient differentiation.
@@ -176,7 +189,7 @@ meta_grads = torch.autograd.grad(loss, meta_params)
#### OOP API <!-- omit in toc -->

TorchOpt also provides OOP API compatible with PyTorch programming style.
Refer to the example and the tutorial notebook [Meta Optimizer](tutorials/3_Meta_Optimizer.ipynb), [Stop Gradient](tutorials/4_Stop_Gradient.ipynb) for more guidances.
Refer to the example and the tutorial notebook [Meta-Optimizer](tutorials/3_Meta_Optimizer.ipynb), [Stop Gradient](tutorials/4_Stop_Gradient.ipynb) for more guidances.

```python
# Define meta and inner parameters
@@ -196,8 +209,8 @@ loss.backward()

### Implicit Gradient (IG)

By treating the solution $\theta^{\star}$ as an implicit function of $\phi$, the idea of IG is to directly get analytical best-response derivatives $\partial \theta^{\star} (\phi) / \partial \phi$ by [implicit function theorem](https://en.wikipedia.org/wiki/Implicit_function_theorem).
This is suitable for algorithms when the inner-level optimal solution is achieved ${\left. \frac{\partial F (\theta, \phi)}{\partial \theta} \right\rvert}_{\theta^{\star}} = 0$ or reaches some stationary conditions $F (\theta^{\star}, \phi) = 0$, such as [iMAML](https://arxiv.org/abs/1909.04630) and [DEQ](https://arxiv.org/abs/1909.01377).
By treating the solution $\theta^{\prime}$ as an implicit function of $\phi$, the idea of IG is to directly get analytical best-response derivatives $\partial \theta^{\prime} (\phi) / \partial \phi$ by [implicit function theorem](https://en.wikipedia.org/wiki/Implicit_function_theorem).
This is suitable for algorithms when the inner-level optimal solution is achieved ${\left. \frac{\partial F (\theta, \phi)}{\partial \theta} \right\rvert}_{\theta=\theta^{\prime}} = 0$ or reaches some stationary conditions $F (\theta^{\prime}, \phi) = 0$, such as [iMAML](https://arxiv.org/abs/1909.04630) and [DEQ](https://arxiv.org/abs/1909.01377).
TorchOpt offers both functional and OOP APIs for supporting both [conjugate gradient-based](https://arxiv.org/abs/1909.04630) and [Neumann series-based](https://arxiv.org/abs/1911.02590) IG methods.
Refer to the example [iMAML](https://github.com/waterhorse1/torchopt/tree/readme/examples/iMAML) and the notebook [Implicit Gradient](tutorials/5_Implicit_Differentiation.ipynb) for more guidances.

@@ -218,7 +231,7 @@ def solve(params, meta_params, data):
# Forward optimization process for params
return output

# Define params, meta params and get data
# Define params, meta_params and get data
params, meta_prams, data = ..., ..., ...
optimal_params = solve(params, meta_params, data)
loss = outer_loss(optimal_params)
@@ -262,10 +275,10 @@ class InnerNet(ImplicitMetaGradientModule, linear_solver):
meta_params, data = ..., ...
inner_net = InnerNet(meta_params)

# Solve for inner-loop process related with the meta parameters
# Solve for inner-loop process related with the meta-parameters
optimal_inner_net = inner_net.solve(data)

# Get outer loss and solve for meta gradient
# Get outer loss and solve for meta-gradient
loss = outer_loss(optimal_inner_net)
meta_grads = torch.autograd.grad(loss, meta_params)
```
@@ -301,10 +314,10 @@ def forward(params, batch, labels):

We take the optimizer as a whole instead of separating it into several basic operators (e.g., `sqrt` and `div`).
Therefore, by manually writing the forward and backward functions, we can perform the symbolic reduction.
In addition, we can store some intermediate data that can be reused during the back-propagation.
In addition, we can store some intermediate data that can be reused during the backpropagation.
We write the accelerated functions in C++ OpenMP and CUDA, bind them by [`pybind11`](https://github.com/pybind/pybind11) to allow they can be called by Python, and then we define the forward and backward behavior using `torch.autograd.Function`.
Users can use by simply setting the `use_accelerated_op` flag as `True`.
Refer to the corresponding sections in tutorials [Functional Optimizer](tutorials/1_Functional_Optimizer.ipynb) and [Meta Optimizer](tutorials/3_Meta_Optimizer.ipynb)
Refer to the corresponding sections in tutorials [Functional Optimizer](tutorials/1_Functional_Optimizer.ipynb) and [Meta-Optimizer](tutorials/3_Meta_Optimizer.ipynb)

```python
optimizer = torchopt.MetaAdam(model, lr, use_accelerated_op=True)
@@ -329,7 +342,7 @@ For more guidance and comparison results, please refer to our open source projec
## Visualization

Complex gradient flow in meta-learning brings in a great challenge for managing the gradient flow and verifying the correctness of it.
TorchOpt provides a visualization tool that draw variable (e.g., network parameters or meta parameters) names on the gradient graph for better analyzing.
TorchOpt provides a visualization tool that draw variable (e.g., network parameters or meta-parameters) names on the gradient graph for better analyzing.
The visualization tool is modified from [`torchviz`](https://github.com/szagoruyko/pytorchviz).
Refer to the example [visualization code](examples/visualize.py) and the tutorial notebook [Visualization](tutorials/2_Visualization.ipynb) for more details.

@@ -346,10 +359,10 @@ Compared with [`torchviz`](https://github.com/szagoruyko/pytorchviz), TorchOpt f

In the [`examples`](examples) directory, we offer several examples of functional optimizer and light-weight meta-learning examples with TorchOpt.

- [Model Agnostic Meta Learning (MAML) - Supervised Learning](https://arxiv.org/abs/1703.03400) (ICML 2017)
- [Model-Agnostic Meta-Learning (MAML) - Supervised Learning](https://arxiv.org/abs/1703.03400) (ICML 2017)
- [Learning to Reweight Examples for Robust Deep Learning](https://arxiv.org/abs/1803.09050) (ICML 2018)
- [Model Agnostic Meta Learning (MAML) - Reinforcement Learning](https://arxiv.org/abs/1703.03400) (ICML 2017)
- [Meta Gradient Reinforcement Learning (MGRL)](https://arxiv.org/abs/1805.09801) (NeurIPS 2018)
- [Model-Agnostic Meta-Learning (MAML) - Reinforcement Learning](https://arxiv.org/abs/1703.03400) (ICML 2017)
- [Meta-Gradient Reinforcement Learning (MGRL)](https://arxiv.org/abs/1805.09801) (NeurIPS 2018)
- [Learning through opponent learning process (LOLA)](https://arxiv.org/abs/1709.04326) (AAMAS 2018)
- [Meta-Learning with Implicit Gradients](https://arxiv.org/abs/1909.04630) (NeurIPS 2019)

@@ -408,10 +421,6 @@ See [CHANGELOG.md](CHANGELOG.md).

--------------------------------------------------------------------------------

## The Team

TorchOpt is a work by [Jie Ren](https://github.com/JieRen98), [Xidong Feng](https://github.com/waterhorse1), [Bo Liu](https://github.com/Benjamin-eecs), [Xuehai Pan](https://github.com/XuehaiPan), [Luo Mai](https://luomai.github.io) and [Yaodong Yang](https://www.yangyaodong.com).

## Citing TorchOpt

If you find TorchOpt useful, please cite it in your publications.
@@ -425,6 +434,10 @@ If you find TorchOpt useful, please cite it in your publications.
}
```

## The Team

TorchOpt is a work by [Jie Ren](https://github.com/JieRen98), [Xidong Feng](https://github.com/waterhorse1), [Bo Liu](https://github.com/Benjamin-eecs), [Xuehai Pan](https://github.com/XuehaiPan), [Luo Mai](https://luomai.github.io), and [Yaodong Yang](https://www.yangyaodong.com).

## License

TorchOpt is released under the Apache License, Version 2.0.
2 changes: 1 addition & 1 deletion docs/source/examples/MAML.rst
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Model-Agnostic Meta-Learning
============================

Meta reinforcement learning has achieved significant successes in various applications.
Meta-reinforcement learning has achieved significant successes in various applications.
**Model-Agnostic Meta-Learning** (MAML) :cite:`MAML` is the pioneer one.
In this tutorial, we will show how to train MAML on few-shot Omniglot classification with TorchOpt step by step.
The full script is at :gitcode:`examples/few-shot/maml_omniglot.py`.
6 changes: 5 additions & 1 deletion docs/source/spelling_wordlist.txt
Original file line number Diff line number Diff line change
@@ -26,7 +26,7 @@ Pan
Yao
Fu
Jupyter
Colaboratory
Colab
Omniglot
differentiable
Dataset
@@ -97,6 +97,10 @@ KKT
num
posinf
neginf
backpropagated
backpropagating
backpropagation
backprop
fmt
pragma
broadcasted
13 changes: 7 additions & 6 deletions docs/source/torchopt101/torchopt-101.rst
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
Get Started with Jupyter Notebook
=================================

In this tutorial, we will use Google Colaboratory to show you the most basic usages of TorchOpt.
In this tutorial, we will use Google Colab notebooks to show you the most basic usages of TorchOpt.

- 1: `Functional Optimizer <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/1_Functional_Optimizer.ipynb>`_
- 2: `Visualization <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/2_Visualization.ipynb>`_
- 3: `Meta Optimizer <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/3_Meta_Optimizer.ipynb>`_
- 4: `Stop Gradient <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/4_Stop_Gradient.ipynb>`_
- 5: `Implicit Differentiation <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/5_Implicit_Differentiation.ipynb>`_
- 1: `Functional Optimizer <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/1_Functional_Optimizer.ipynb>`_
- 2: `Visualization <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/2_Visualization.ipynb>`_
- 3: `Meta-Optimizer <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/3_Meta_Optimizer.ipynb>`_
- 4: `Stop Gradient <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/4_Stop_Gradient.ipynb>`_
- 5: `Implicit Differentiation <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/5_Implicit_Differentiation.ipynb>`_
- 6: `Zero-order Differentiation <https://colab.research.google.com/github/metaopt/torchopt/blob/main/tutorials/6_Zero_Order_Differentiation>`_
79 changes: 79 additions & 0 deletions tests/test_zero_order.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright 2022 MetaOPT Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import functorch
import torch
import torch.nn as nn
import torch.types

import helpers
import torchopt


BATCH_SIZE = 8
NUM_UPDATES = 5


class FcNet(nn.Module):
def __init__(self, dim, out):
super().__init__()
self.fc = nn.Linear(in_features=dim, out_features=out, bias=True)
nn.init.ones_(self.fc.weight)
nn.init.zeros_(self.fc.bias)

def forward(self, x):
return self.fc(x)


@helpers.parametrize(
dtype=[torch.float64, torch.float32],
lr=[1e-2, 1e-3],
method=['naive', 'forward', 'antithetic'],
sigma=[0.01, 0.1, 1],
)
def test_zero_order(dtype: torch.dtype, lr: float, method: str, sigma: float) -> None:
helpers.seed_everything(42)
input_size = 32
output_size = 1
batch_size = BATCH_SIZE
coef = 0.1
num_iterations = NUM_UPDATES
num_samples = 500

model = FcNet(input_size, output_size)

fmodel, params = functorch.make_functional(model)
x = torch.randn(batch_size, input_size) * coef
y = torch.randn(input_size) * coef
distribution = torch.distributions.Normal(loc=0, scale=1)

@torchopt.diff.zero_order.zero_order(
distribution=distribution, method=method, argnums=0, sigma=sigma, num_samples=num_samples
)
def forward_process(params, fn, x, y):
y_pred = fn(params, x)
loss = torch.mean((y - y_pred) ** 2)
return loss

optimizer = torchopt.adam(lr=lr)
opt_state = optimizer.init(params)

for i in range(num_iterations):
opt_state = optimizer.init(params) # init optimizer
loss = forward_process(params, fmodel, x, y) # compute loss

grads = torch.autograd.grad(loss, params) # compute gradients
updates, opt_state = optimizer.update(grads, opt_state) # get updates
params = torchopt.apply_updates(params, updates) # update network parameters
4 changes: 2 additions & 2 deletions torchopt/transform/scale_by_adam.py
Original file line number Diff line number Diff line change
@@ -90,7 +90,7 @@ def scale_by_adam(
Term added to the denominator to improve numerical stability.
eps_root: (default: :const:`0.0`)
Term added to the denominator inside the square-root to improve
numerical stability when back-propagating gradients through the rescaling.
numerical stability when backpropagating gradients through the rescaling.
moment_requires_grad: (default: :data:`False`)
If :data:`True`, states will be created with flag `requires_grad = True`.
@@ -214,7 +214,7 @@ def scale_by_accelerated_adam(
Term added to the denominator to improve numerical stability.
eps_root: (default: :const:`0.0`)
Term added to the denominator inside the square-root to improve
numerical stability when back-propagating gradients through the rescaling.
numerical stability when backpropagating gradients through the rescaling.
moment_requires_grad: (default: :data:`False`)
If :data:`True`, states will be created with flag `requires_grad = True`.
Loading

0 comments on commit a760c83

Please sign in to comment.