Skip to content
/ sbp-sr Public

Implementation of "Smooth Bilevel Programming for Sparse Regularization" with Scikit-Learn API

License

Notifications You must be signed in to change notification settings

miclegr/sbp-sr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sbp-sr

Implementation of Smooth Bilevel Programming for Sparse Regularization with Scikit-Learn API.

Installation

pip install -U git+https://github.com/miclegr/sbp-sr

Requirements are Numpy, Scikit-Learn and Numba

Examples

import sbpsr
import sklearn.datasets

n, p = 1000, 20
X, y = sklearn.datasets.make_regression(n,p)

model = sbpsr.Lasso(alpha=1e-3).fit(X,y)
cv = sbpsr.LassoCV().fit(X,y)

Paper

Smooth Bilevel Programming for Sparse Regularization
Clarice Poon, Gabriel Peyré

About

Implementation of "Smooth Bilevel Programming for Sparse Regularization" with Scikit-Learn API

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages