-
Notifications
You must be signed in to change notification settings - Fork 3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
slice operator implementation for webgpu native #23264
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#include "core/common/inlined_containers.h" | ||
#include "core/providers/webgpu/tensor/slice.h" | ||
#include "core/providers/cpu/tensor/utils.h" | ||
#include "core/providers/webgpu/shader_helper.h" | ||
#include "core/providers/webgpu/webgpu_supported_types.h" | ||
|
||
namespace onnxruntime { | ||
namespace webgpu { | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
1, 9, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()), | ||
Slice); | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
10, 10, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
11, 12, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
ONNX_OPERATOR_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
13, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
Status SliceProgram::GenerateShaderCode(ShaderHelper& shader) const { | ||
const ShaderVariableHelper& input = shader.AddInput("input", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias); | ||
const ShaderVariableHelper& output = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias); | ||
|
||
shader.MainFunctionBody() << shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size") | ||
<< "let output_indices = " << output.OffsetToIndices("global_idx") << ";\n" | ||
<< "var input_indices: input_indices_t;\n" | ||
<< "var carry = 0u;\n"; | ||
|
||
for (int i = input.Rank() - 1; i >= 0; i--) { | ||
std::string input_shape_i = absl::StrCat("input_shape_", i); | ||
std::string steps_i = absl::StrCat("steps_", i); | ||
std::string starts_i = absl::StrCat("starts_", i); | ||
std::string output_index_i = absl::StrCat("output_index_", i); | ||
std::string input_index_i = absl::StrCat("input_index_", i); | ||
Check warning on line 75 in onnxruntime/core/providers/webgpu/tensor/slice.cc GitHub Actions / Optional Lint C++
|
||
|
||
shader.MainFunctionBody() << "let " << input_shape_i << " = " << input.IndicesGet("uniforms.input_shape", i) << ";\n" | ||
<< "let " << steps_i << " = " << input.IndicesGet("uniforms.steps", i) << ";\n" | ||
<< "let " << starts_i << " = " << input.IndicesGet("uniforms.starts", i) << ";\n" | ||
<< "var " << output_index_i << " = " << output.IndicesGet("output_indices", i) << ";\n" | ||
<< "var " << input_index_i << " = " << output_index_i << " * " << steps_i << " + " << starts_i << " + carry;\n" | ||
<< "carry = " << input_index_i << " / " << input_shape_i << ";\n" | ||
<< input_index_i << " = " << input_index_i << " % " << input_shape_i << ";\n" | ||
<< "if (" << input.IndicesGet("uniforms.signs", i) << " < 0) {\n" | ||
<< " " << input_index_i << " = " << input_shape_i << " - " << input_index_i << " - 1u + " << starts_i << ";\n" | ||
<< "}\n" | ||
<< input.IndicesSet("input_indices", i, input_index_i) << ";\n"; | ||
} | ||
|
||
shader.MainFunctionBody() << output.SetByOffset("global_idx", input.GetByIndices("input_indices")); | ||
|
||
return Status::OK(); | ||
} | ||
|
||
Status Slice::ComputeInternal(ComputeContext& context) const { | ||
// READ INPUTS | ||
const Tensor* input_tensor = context.Input(0); | ||
const TensorShape& input_shape = input_tensor->Shape(); | ||
int64_t input_rank = static_cast<int64_t>(input_shape.NumDimensions()); | ||
|
||
auto starts_raw = attr_starts_.empty() ? context.Input(1)->DataAsSpan<int64_t>() : gsl::make_span(attr_starts_); | ||
auto ends_raw = attr_ends_.empty() ? context.Input(2)->DataAsSpan<int64_t>() : gsl::make_span(attr_ends_); | ||
|
||
ORT_ENFORCE(starts_raw.size() == ends_raw.size(), "starts and ends must have the same size"); | ||
|
||
int input_count = context.InputCount(); | ||
|
||
const Tensor* axes_tensor = nullptr; | ||
const Tensor* steps_tensor = nullptr; | ||
|
||
if (input_count >= 4) { | ||
// axes provided as input | ||
axes_tensor = context.Input(3); | ||
} | ||
|
||
if (input_count == 5) { | ||
// steps provided as input | ||
steps_tensor = context.Input(4); | ||
} | ||
|
||
// Inject defaults if axes or steps not provided | ||
std::vector<int64_t> axes_default; | ||
if (axes_tensor == nullptr) { | ||
// if axes not provided, set to [0, ..., len(starts)-1] | ||
for (size_t i = 0; i < starts_raw.size(); i++) { | ||
axes_default.push_back(i); | ||
} | ||
} | ||
auto axes_raw = attr_axes_.empty() ? (axes_tensor == nullptr ? gsl::make_span(axes_default) : axes_tensor->DataAsSpan<int64_t>()) : gsl::make_span(attr_axes_); | ||
|
||
std::vector<int64_t> steps_default; | ||
if (steps_tensor == nullptr) { | ||
// if steps not provided, set to [1, ..., 1] of len(starts) | ||
for (size_t i = 0; i < starts_raw.size(); i++) { | ||
steps_default.push_back(1); | ||
} | ||
} | ||
auto steps_raw = steps_tensor == nullptr ? gsl::make_span(steps_default) : steps_tensor->DataAsSpan<int64_t>(); | ||
|
||
// PROCESS INPUTS | ||
std::vector<uint32_t> axes; | ||
for (unsigned int i = 0; i < axes_raw.size(); i++) { | ||
int64_t val = axes_raw[i]; | ||
if (val < 0) { | ||
val += input_rank; | ||
} | ||
axes.push_back(static_cast<int32_t>(val)); | ||
} | ||
|
||
std::vector<uint32_t> starts; | ||
for (unsigned int i = 0; i < starts_raw.size(); i++) { | ||
int64_t val = starts_raw[i]; | ||
if (val < 0) { | ||
val += input_shape[axes[i]]; | ||
} | ||
|
||
if (steps_raw[i] < 0) { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1))); | ||
} else { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]]))); | ||
} | ||
starts.push_back(static_cast<uint32_t>(val)); | ||
} | ||
|
||
std::vector<uint32_t> ends; | ||
for (unsigned int i = 0; i < ends_raw.size(); i++) { | ||
int64_t val = ends_raw[i]; | ||
if (val < 0) { | ||
val += input_shape[axes[i]]; | ||
} | ||
if (steps_raw[i] < 0) { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1))); | ||
} else { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]]))); | ||
Check warning on line 174 in onnxruntime/core/providers/webgpu/tensor/slice.cc GitHub Actions / Optional Lint C++
|
||
} | ||
ends.push_back(static_cast<uint32_t>(val)); | ||
} | ||
|
||
// temporary steps vector to handle negative steps | ||
std::vector<int32_t> steps_tmp; | ||
for (unsigned int i = 0; i < steps_raw.size(); i++) { | ||
if (steps_raw[i] >= std::numeric_limits<int32_t>::max()) { | ||
Check warning on line 182 in onnxruntime/core/providers/webgpu/tensor/slice.cc GitHub Actions / Optional Lint C++
|
||
steps_tmp.push_back(std::numeric_limits<int32_t>::max()); | ||
} else { | ||
steps_tmp.push_back(static_cast<int32_t>(steps_raw[i])); | ||
} | ||
} | ||
|
||
// Insert missing dimensions | ||
if (static_cast<int64_t>(axes.size()) != input_rank) { | ||
for (uint32_t i = 0; i < input_rank; i++) { | ||
int idx = -1; | ||
for (unsigned int j = 0; j < axes_raw.size(); j++) { | ||
if (axes_raw[j] == i) { | ||
idx = j; | ||
break; | ||
} | ||
} | ||
if (idx == -1) { | ||
axes.insert(axes.begin() + i, i); | ||
starts.insert(starts.begin() + i, 0); | ||
ends.insert(ends.begin() + i, static_cast<uint32_t>(input_shape[i])); | ||
steps_tmp.insert(steps_tmp.begin() + i, 1); | ||
} | ||
} | ||
} | ||
|
||
// retain the sign of the steps | ||
std::vector<int32_t> signs; | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
signs.push_back(steps_tmp[i] < 0 ? -1 : (steps_tmp[i] > 0 ? 1 : 0)); | ||
} | ||
|
||
// Convert negative steps to positive steps and reverse starts and ends | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
if (steps_tmp[i] < 0) { | ||
float numSteps = static_cast<float>((static_cast<float>(ends[i]) - static_cast<float>(starts[i])) / static_cast<float>(steps_tmp[i])); | ||
float newEnd = static_cast<float>(starts[i]); | ||
float newStart = newEnd + numSteps * static_cast<float>(steps_tmp[i]); | ||
|
||
starts[i] = static_cast<uint32_t>(newStart); | ||
ends[i] = static_cast<uint32_t>(newEnd); | ||
steps_tmp[i] = static_cast<int32_t>(-steps_tmp[i]); | ||
} | ||
} | ||
|
||
// final steps vector of type unsigned int | ||
std::vector<uint32_t> steps; | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
steps.push_back(static_cast<uint32_t>(steps_tmp[i])); | ||
} | ||
|
||
// Reorder inputs in order of axis | ||
std::vector<int32_t> signs_reordered; | ||
std::vector<uint32_t> steps_reordered, starts_reordered; | ||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
signs_reordered.push_back(0); | ||
steps_reordered.push_back(0); | ||
starts_reordered.push_back(0); | ||
} | ||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
int32_t dim = axes[i]; | ||
signs_reordered[dim] = signs[i]; | ||
steps_reordered[dim] = steps[i]; | ||
starts_reordered[dim] = starts[i]; | ||
} | ||
|
||
// calculate output dims | ||
std::vector<int64_t> output_dims; | ||
Check warning on line 249 in onnxruntime/core/providers/webgpu/tensor/slice.cc GitHub Actions / Optional Lint C++
|
||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
int32_t dim = axes[i]; | ||
float tmp = ceil((static_cast<float>(ends[dim]) - static_cast<float>(starts[dim])) / static_cast<float>(steps[dim])); | ||
if (tmp < 0) | ||
output_dims.push_back(0); | ||
else | ||
output_dims.push_back(static_cast<int64_t>(tmp)); | ||
} | ||
|
||
TensorShape output_shape(output_dims); | ||
|
||
auto* output_tensor = context.Output(0, output_shape); | ||
uint32_t output_size = static_cast<uint32_t>(output_shape.Size()); | ||
|
||
if (output_size == 0) { | ||
return Status::OK(); | ||
} | ||
|
||
SliceProgram program{}; | ||
program | ||
.AddInputs({{input_tensor, ProgramTensorMetadataDependency::TypeAndRank}}) | ||
.AddOutputs({output_tensor}) | ||
.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE) | ||
.AddUniformVariables({{output_size}, {starts_reordered}, {steps_reordered}, {signs_reordered}}); | ||
return context.RunProgram(program); | ||
} | ||
|
||
} // namespace webgpu | ||
} // namespace onnxruntime |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#pragma once | ||
|
||
#include "core/providers/webgpu/webgpu_kernel.h" | ||
#include "core/providers/webgpu/program.h" | ||
#include <iostream> | ||
Check warning on line 8 in onnxruntime/core/providers/webgpu/tensor/slice.h GitHub Actions / Optional Lint C++
|
||
|
||
namespace onnxruntime { | ||
namespace webgpu { | ||
|
||
class SliceProgram final : public Program<SliceProgram> { | ||
public: | ||
SliceProgram() : Program{"Slice"} {} | ||
|
||
Status GenerateShaderCode(ShaderHelper& sh) const override; | ||
|
||
WEBGPU_PROGRAM_DEFINE_UNIFORM_VARIABLES({"output_size", ProgramUniformVariableDataType::Uint32}, | ||
{"starts", ProgramUniformVariableDataType::Uint32}, | ||
{"steps", ProgramUniformVariableDataType::Uint32}, | ||
{"signs", ProgramUniformVariableDataType::Int32}); | ||
}; | ||
|
||
class Slice final : public WebGpuKernel { | ||
public: | ||
Slice(const OpKernelInfo& info) : WebGpuKernel(info) { | ||
info.GetAttrs("starts", attr_starts_).IsOK(); | ||
info.GetAttrs("ends", attr_ends_).IsOK(); | ||
info.GetAttrs("axes", attr_axes_).IsOK(); | ||
} | ||
|
||
Status ComputeInternal(ComputeContext& context) const override; | ||
|
||
private: | ||
std::vector<int64_t> attr_starts_, attr_ends_, attr_axes_; | ||
Check warning on line 36 in onnxruntime/core/providers/webgpu/tensor/slice.h GitHub Actions / Optional Lint C++
|
||
}; | ||
|
||
} // namespace webgpu | ||
} // namespace onnxruntime |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
.IsOK() is unnecessary
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I get the following error without .isOK():