A command API for accessing various keychains or secure enclaves.
Applications use several credentials today to secure data locally and during transmitted. However, bad habits happen when safeguarding these credentials. For example, when creating an API token for Amazon's AWS, Amazon generates a secret key on a user's behalf and is downloaded to a CSV file. Programmers do not know how to best sure these downloaded credentials because they must be used in a program to make API calls. They don't know which of the following is the best option:
- Put these credentials directly in the program like most do as constant variables but this is a terrible option because attackers can analyze the code and extract it.
- Use environment variables. If so, should it be passed as at the command level or put in a global variable registry? Both are susceptible to sniffing memory or process information.
- Read a config file that contains the credentials but must rely on the security of the operating system to manage access control.
- Use secure enclaves to store the credentials but this just shifts to another problem as secure enclaves rely on yet another set of credentials to ensure the application has the correct authorization. These come as hardware security modules (HSM) or trusted execution environments (TEE)
- Require interaction with a user or group to supply the credential for each use or cache it for a period of time. This is usually done with passwords, pins, cyber tokens, and biometrics.
Where to put the credential that is directly used by applications or people is called the top level credential problem.
There are services like LeakLooker that browse the internet looking for credentials that can be scrapped and unfortunately but often succeed. Some projects have documented how to test credentials to see if they have been revealed. See keyhacks.
These document aims to provide guidance and aid in adopting best practices and developing code to address the top level credential problem–-the credential used to protect all others–the keys to the kingdom–or a secret that is used directly by a program that if compromised would yield disastrous consequences.
Cryptex is a layer that is designed to be a command line tool or API library for storing secrets that tries to make it hard to get wrong.
The default is to use the operating system keychain. The goal is to add to Cryptex to allow for
many different enclaves that are optimal for storing the keys to the kingdom like YubiKey, Intel SGX, or Arm Trustzone.
In principle, a system's secure enclave should be able to keep some credentials away from root
(as in, the attacker can use the credential as long as they have access, but they can't extract the credential for persistence), and assuming no other attacks like Foreshadow.
Mac OS X, Linux, and Android have built-in keychains that are guarded by the operating system. iOS and Android come with hardware secure enclaves or trusted execution environments for managing the secrets stored in the keychain.
This first iteration uses the OS keychain or an equivalent and uses the command line or is a C callable API. Future work could allow for communication over unix or tcp sockets with Cryptex running as a daemon process.
Currently Mac OS X offers support for a CLI tool and libraries but they are complex to understand and can be prone to misuse due to misunderstandings. Cryptex removes the complexity by choosing secure defaults so developers can focus on their job.
Cryptex is written in Rust and has no external dependencies to do its job except DBus on linux.
Cryptex also allows for using SQLCipher instead of keyring via the feature=file
.
You can check if SQLCipher is enabled by running the function allows_file()
.
This approach uses two inputs to create the encryption key: a user selected password, and random system generated data.
Similar to how databases use connection strings, this library employs a connection string to indicate the values as well.
The connection string syntax is password=<password> salt=<hex encoded salt value>
. This value is hashed using Argon2id
and thus the memory, threads, and degree of parallelism can also be set as part of the string
memory=<integer> threads=<integer> parallel=<integer>
.
The program can be compiled from any OS to run on any OS. Cryptex-CLI is the command line tool while Cryptex is the library.
Eventually, additional cryptographic services will be added like hardware-based HSMs or TPMs or TEEs or software-based like
with the goal of having a standardized security interface. The challenge with additional services is each one has varying threat models, expectations, requirements, assumptions, and specifications around operations and parameters. Cryptex aims to be the main abstraction layer to manage these.
This crate enables running as a rust library.
use cryptex::{get_os_keyring, KeyRing};
let mut keyring = get_os_keyring();
keyring.set_secret("test_key", b"secret")?;
// Retrieve secret later
let secret = keyring.get_secret("test_key")?;
// Remove the secret from the keyring
keyring.delete_secret("test_key");
Basic Usage
Requires dbus library on linux.
On ubuntu, this is libdbus-1-3 when running. On redhat, this is dbus when running.
Gnome-keyring or KWallet must also be installed on Linux.
Cryptex can be run either using cargo run -- <args> or if it is already built from source using ./cryptex.
Cryptex tries to determine if input is a file or text. If a file exists that matches the entered text, Cryptex will read the contents. Otherwise, it will prompt the user for either the id of the secret or to enter a secret.
Cryptex stores secrets based on a service name and an ID. The service name is the name of the program or process that only is allowed to access the secret with ID. Secrets can be retrieved, stored, or deleted.
When secrets are stored, care should be given to not pass the value over the command line as it could be stored in the command line history. For this reason, either put the value in a file or Cryptex will read it from STDIN. After Cryptex stores the secret, Cryptex will securely wipe it from memory.
One remaining problem is how to solve the service name provided to Cryptex. Ideally Cryptex could compute it instead of supplied from the calling endpoint which can lie about the name. We can imagine an attacker who wants access to the aws credentials in the keychain just needs to know the service name and the id of the secret to request it. Access is still blocked by the operating system if the attacker doesn't know the keychain credentials similar to a password vault. If Cryptex could compute the service name then this makes it harder for an attacker to retrieve targeted secrets. However, this is better than the secrets existing in plaintext in code, config files, or environment variables.
Cryptex takes at least two arguments: service_name and ID. When storing a secret, an additional parameter is needed. If omitted (the preferred method) the value is read from STDIN.
In the case of using SQLCipher, the service_name is the connection string to be used
cryptex set aws 1qwasdrtyuhjnjyt987yh
prompt> ...<Return>
Success
cryptex get aws 1qwasdrtyuhjnjyt987yh
<Secret Value>
cryptex delete aws 1qwasdrtyuhjnjyt987yh
Cryptex can read all values stored in the keyring. List will just list the name of all the values in the keyring without retrieving their actual values.
cryptex list
{"application": "cryptex", "id": "apikey", "service": "aws", "username": "mike", "xdg:schema": "org.freedesktop.Secret.Generic"}
{"application": "cryptex", "id": "walletkey", "service": "indy", "username": "mike", "xdg:schema": "org.freedesktop.Secret.Generic"}
Cryptex can retrieve all or a subset of secrets in the keyring. Peek without any arguments will pull out all keyring names and their values. Because Cryptex encrypts values before storing them in the keyring if it can, those values will be returned as hex values instead of their associated plaintext. Peek filtering is different based on the operating system.
For OSX, filtering is based on the kind that should be read. It can be generic or internet passwords. generic only requires the service and account labels. internet requires the server, account, protocol, authentication_type values. Filters are supplied as name value pairs separated by = and multiple pairs separated by a comma.
cryptex peek service=aws,account=apikey
For Linux, filtering is based on a subset of name value pairs of the attributes that match. For example, if the attributes in the keyring were like this
{"application": "cryptex", "id": "apikey", "service": "aws", "username": "mike", "xdg:schema": "org.freedesktop.Secret.Generic"}
{"application": "cryptex", "id": "walletkey", "service": "indy", "username": "mike", "xdg:schema": "org.freedesktop.Secret.Generic"}
To filter based on id, run
cryptex peek id=apikey
To filter based on username AND service, run
cryptex peek username=mike,service=aws
For Windows, filtering is based on the credentials targetname and globbing. For example, if list returned
{"targetname": "MicrosoftAccount:target=SSO_POP_Device"}
{"targetname": "WindowsLive:target=virtualapp/didlogical"}
{"targetname": "LegacyGeneric:target=IEUser:aws:apikey"}
then filtering searches everything after ":target=". In this case, if the value to be peeked is IEUser:aws:apikey, the following will return just that result
cryptex.exe peek IE*
cryptex.exe peek IE*apikey
cryptex.exe peek IEUser:aws:apikey
[build-from-source]: # build-from-source
To make a distributable executable, run the following commands:
- On Linux install dbus library. On a debian based OS this is libdbus-1-dev. On a Redhat based OS this is dbus-devel.
- curl https://sh.rustup.rs -sSf | sh -s -- -y - installs the run compiler
- cd reference_code/
- cargo build --release - when this is finished the executable is target/release/cryptex.
- For *nix users cp target/release/cryptex /usr/local/lib and chmod +x /usr/local/lib/cryptex
- For Windows users copy target/release/cryptex.exe to a folder and add that folder to your %PATH variable.
Libcryptex is the library that can be linked to programs to manage secrets. Use the library for the underlying operating system that meets your needs
- libcryptex.dll - Windows
- libcryptex.so - Linux
- libcryptex.dylib - Mac OS X
Allow for other enclaves like Hashicorp vault, LastPass, 1Password. Allow for steganography methods like using images or Microsoft Office files for storing the secrets.