Skip to content

minfawang/cs221-pommerman

Repository files navigation

cs221-pommerman

RL agent for Pommerman: https://www.pommerman.com/

Setup

Prerequisites

  • Python3: we use Python version 3+ for this project.
  • Pipenv: Python package manager and virtual environment. Can be installed with command pip install pipenv.

Initial Setup

At the first time, run the following commands:

git clone [email protected]:minfawang/cs221-pommerman.git  # Clones repo.
cd cs221-pommerman  # Changes your directory to the root of the repo.
# If you use a conda custom Python binary, then you may use the
# command in the comment below:
# pipenv --python /usr/local/bin/python3 install
pipenv --three install  # Create a virtual env using Python3.

# Enter virtual env.
pipenv shell

# Set up custom python kernel with correct binary and dependency.
# https://stackoverflow.com/a/47296960
python -m ipykernel install --user --name=cs221-pommerman

Run game

cd playground

# Run this command every time before executing the programs below.
# "develop" vs "install": https://stackoverflow.com/a/19048754/4115411
python setup.py develop

# Control agents programmatically
python examples/simple_ffa_run.py

# Control agents from CLI
# See more detailed docs at: playground/docs/CLI.md
pom_battle --agents=player::arrows,test::agents.SimpleAgent,random::null,random::null --times=2

Run Training

All the learning scripts are under

playground/examples/tf_*.py

To start the training, modify the corresponding flags within the .py file, and run with python directly within the virtual environment.

Submission

http://web.stanford.edu/class/cs221/project.html#p-proposal

Resources

From official research.md:

  1. Proximal Policy Optimization (PPO) [14 Refs, 264 Cites] https://arxiv.org/abs/1707.06347
  2. Multi-Agent DDPG [36 Refs, 86 Cites] https://github.com/openai/maddpg Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments https://arxiv.org/abs/1706.02275
  3. Monte Carlo Tree Search https://gnunet.org/sites/default/files/Browne%20et%20al%20-%20A%20survey%20of%20MCTS%20methods.pdf
  4. Monte Carlo Tree Search and Reinforcement Learning https://www.jair.org/media/5507/live-5507-10333-jair.pdf
  5. Cooperative Multi-Agent Learning https://link.springer.com/article/10.1007/s10458-005-2631-2
  6. Opponent Modeling in Deep Reinforcement Learning [25 Refs, 27 Cites] http://www.umiacs.umd.edu/~hal/docs/daume16opponent.pdf https://arxiv.org/abs/1609.05559
  7. Machine Theory of Mind [67 Refs, 7 Cites] https://arxiv.org/pdf/1802.07740.pdf
  8. Coordinated Multi-Agent Imitation Learning https://arxiv.org/pdf/1703.03121.pdf
  9. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games https://arxiv.org/pdf/1603.01121.pdf andhttp://proceedings.mlr.press/v37/heinrich15.pdf
  10. Autonomous Agents Modelling Other Agents [250 Refs, 7 Cites] http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/AIJ18-Albrecht.pdf

About

RL agent for Pommerman

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published