Skip to content

minhptx/iswc-2016-semantic-labeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic Typing

Automatically assign semantics to large data sets from heterogeneous sources based on their features using several Statistical and Machine Learning techniques.

Prerequisites

  1. Elasticsearch
  2. Pyspark
  3. scikit-learn
  4. pandas

Run API

  1. Build docker image

cd container; docker build -t isi/semantic-labeling .

  1. Start elasticsearch:

docker-compose up

  1. Calling API

bin/semantic_labeling.sh <train_dataset> <test_dataset> <train_dataset2>

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published