Skip to content

PyTorch implementation of "Detecting Incongruity Between News Headline and Body Text via a Deep Hierarchical Encoder", AAAI-19

Notifications You must be signed in to change notification settings

minwhoo/detecting-incongruity-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detecting Incongruity in PyTorch

PyTorch implementation of Attentive Hierarchical Dual Encoder model from the following paper:

Detecting Incongruity Between News Headline and Body Text via a Deep Hierarchical Encoder, AAAI-19, paper

Original Tensorflow implementation can be found here [1]

Requirements

  • Python 3.6 or greater
  • PyTorch 1.2.0

Installation

pip install -r requirements.txt

Download Dataset

Follow instructions from the original Tensorflow repo [1].

Train

NELA 2017

python main.py --data-dir <PATH_TO_NELA_2017_DATA> \
               --max-headline-len 25 \
               --max-para-len 200 \
               --max-num-para 50 \
               --headline-rnn-hidden-dim 200 \
               --word-level-rnn-hidden-dim 200 \
               --paragraph-level-rnn-hidden-dim 100 \
               --lr 0.001 \
               --batch-size 64 \
               --evaluate-test-after-train

References

[1] https://github.com/david-yoon/detecting-incongruity

Cite

Please cite our paper, when you use our code | dataset | model

@inproceedings{yoon2019detecting,
title={Detecting Incongruity between News Headline and Body Text via a Deep Hierarchical Encoder},
author={Yoon, Seunghyun and Park, Kunwoo and Shin, Joongbo and Lim, Hongjun and Won, Seungpil and Cha, Meeyoung and Jung, Kyomin},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={33},
pages={791--800},
year={2019}
}

About

PyTorch implementation of "Detecting Incongruity Between News Headline and Body Text via a Deep Hierarchical Encoder", AAAI-19

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages