-
Notifications
You must be signed in to change notification settings - Fork 0
mkorendyke/metisregimes
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# metisregimes Calculate circulation regimes in the winter PacNA region, and characterize with atmospheric rivers Calculate circulation regimes: Data used: twice-daily z500, u250 ERA5 PacNA NDJFM 1980-2019 once daily z500, u250 Metis PacNA NDJFM 1986-2016 1. Low-pass filter the data using hpfilter_twice.ipynb 2. Remove the seasonal cycle and calculate anomalies using calcanoms_3_NDJFM_twice.ipynb 3. Perform PCA on the anomalies using calcPCs_4.ipynb 4. Calculate clusters from first 12 PCs 5. Identify how well regime composites are represented in ERA5 by Metis199, 639, 1279: Taylor_regimes.ipynb - This code depends on the taylorDiagram.py code - Acknowledgements: Y. Copin for this code -------- Atmospheric rivers: 1. Get atmospheric river variables from ERA5: subset.AR.ERA5.ipynb - Note that this code allows the user to choose the grid resolution: N32 or N128 2. For ERA5 data: calculate moisture flux using calc_vqvi.AR.ERA5.ipynb 3. Identify atmospheric rivers given moisture flux using AR_notrack_2.ipynb 4. Calculate anomalies from the mean number of atmospheric rivers using AR_notrack_3.calcanoms.ipynb 5. Assign atmospheric river anomalies to regimes using AR_notrack_4.assign_clusters.ipynb 6. Plot atmospheric river anomaly composites for the regimes using AR_notrack_5.plot_composites.ipynb 7. Plot the total atmospheric rivers calculated in ERA5 and metis using AR_notrack_5.plot_totals.ipynb 8. Calculate atmospheric river composite correlations between ERA5 and metis using AR_notrack_6.calc_comp_corr.ipynb
About
Calculate circulation regimes in the winter PacNA region, and characterize with atmospheric rivers
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published