Skip to content

[Snyk] Security upgrade requests from 2.31.0 to 2.32.0 #149

[Snyk] Security upgrade requests from 2.31.0 to 2.32.0

[Snyk] Security upgrade requests from 2.31.0 to 2.32.0 #149

Workflow file for this run

# This is a basic workflow to help you get started with Actions
name: ML Workflow
# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
# Base workflow:
# workflow_2_0_0_node: workflow|workflow|2.0.0|5594a17a-d1df-4aff-adeb-d5e38eab7e65
# Workflow w/ feature engineering:
# workflow_2_1_0_node: workflow|workflow|2.0.0|22414c60-a10d-474b-9bf2-824c821ea2d8
# Workflow w/ feature engineering & responsible AI:
# workflow_2_2_0_node: workflow|workflow|2.0.0|42804cf5-cd45-4a50-ad64-ea0150b9e494
# Workflow w/ feature engineering & responsible AI & kf_serving:
# workflow_2_3_0_node: workflow|workflow|2.0.0|e9e3b723-a337-4de9-a221-03dfd178a6ad
env:
WORKFLOW_NODE_ID: 'workflow|workflow|2.0.0|e9e3b723-a337-4de9-a221-03dfd178a6ad'
SCHEMAS_GIT_URL: https://github.com/mlspec/mlspeclib-action-samples-schemas.git
SCHEMAS_DIRECTORY: .parameters/schemas
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
# This workflow contains a single job called "run_full_workflow"
run_full_workflow:
# The type of runner that the job will run on
runs-on: ubuntu-latest
# Steps represent a sequence of tasks that will be executed as part of the job
steps:
# Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v2
# - name: Debugging with tmate
# uses: mxschmitt/action-tmate@v2
- name: Output all pip packages
id: output_all_pip_packages
run: |
pip freeze > ~/prev_installed_requirements.txt
- name: Cache Pip Installation
uses: actions/cache@v2
env:
cache-name: cache-python36-pip
with:
path: ~/.local
key: ${{ runner.os }}-build-${{ env.cache-name }}-${{ hashFiles('~/prev_installed_requirements.txt') }}
restore-keys: |
${{ runner.os }}-build-${{ env.cache-name }}-
${{ runner.os }}-build-
${{ runner.os }}-
- name: Setup Environment
id: setup_environment
run: |
python3 -m pip install -U setuptools wheel pip
python3 -m pip install -r requirements.txt
python3 -m pip install flake8
python3 -m pip install ipython
python3 -m pip install jupyter
python3 -m pip install nbconvert
- name: Lint checked in code files
id: python_linting
run: |
python3 -m flake8 src --count --config=.flake8 --show-source --statistics
- name: Convert Notebook to Script
id: convert_notebook_production_folder_to_script
run: |
python3 -m nbconvert notebooks/production/*.ipynb --config notebooks/nbconvert_config.py
cp notebooks/production/*.py src/train
cp notebooks/production/*.json data/raw
cp notebooks/production/*.hdf5 data/raw
- name: Run Unit Tests
id: python_unit_tests
run: |
python3 -m unittest discover -s src -p 'test_*.py'
- name: MLSpec Action - Process Data
id: process_data
uses: mlspec/[email protected]
with:
METASTORE_CREDENTIALS: ${{ secrets.METASTORE_CREDENTIALS_PROD }}
SCHEMAS_DIRECTORY: '${{ env.SCHEMAS_DIRECTORY }}'
SCHEMAS_GIT_URL: '${{ env.SCHEMAS_GIT_URL }}'
WORKFLOW_NODE_ID: '${{ env.WORKFLOW_NODE_ID }}'
STEP_NAME: process_data
NEXT_STEP_NAME: train
INPUT_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/process_data/input.yaml
EXECUTION_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/process_data/execution.yaml
EXECUTION_FILE: ${{ github.workspace }}/src/process_data/process_data.py
- name: MLSpec Action - Feature Engineering
id: feature_engineering
uses: mlspec/[email protected]
with:
METASTORE_CREDENTIALS: ${{ secrets.METASTORE_CREDENTIALS_PROD }}
SCHEMAS_DIRECTORY: '${{ env.SCHEMAS_DIRECTORY }}'
SCHEMAS_GIT_URL: '${{ env.SCHEMAS_GIT_URL }}'
WORKFLOW_NODE_ID: '${{ env.WORKFLOW_NODE_ID }}'
STEP_NAME: feature_engineering
PREVIOUS_STEP_NAME: process_data
NEXT_STEP_NAME: train
INPUT_PARAMETERS_BASE64: ${{ steps.process_data.outputs.output_base64_encoded }}
EXECUTION_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/feature_engineering/execution.yaml
EXECUTION_FILE: ${{ github.workspace }}/src/feature_engineering/feature_engineering.py
- name: MLSpec Action - Train
id: train
uses: mlspec/[email protected]
with:
METASTORE_CREDENTIALS: ${{ secrets.METASTORE_CREDENTIALS_PROD }}
SCHEMAS_DIRECTORY: '${{ env.SCHEMAS_DIRECTORY }}'
SCHEMAS_GIT_URL: '${{ env.SCHEMAS_GIT_URL }}'
WORKFLOW_NODE_ID: '${{ env.WORKFLOW_NODE_ID }}'
STEP_NAME: train
PREVIOUS_STEP_NAME: feature_engineering
NEXT_STEP_NAME: package
INPUT_PARAMETERS_BASE64: ${{ steps.feature_engineering.outputs.output_base64_encoded }}
EXECUTION_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/train/execution.yaml
EXECUTION_FILE: ${{ github.workspace }}/src/train/train.py
- name: MLSpec Action - Package
id: package
uses: mlspec/[email protected]
with:
METASTORE_CREDENTIALS: ${{ secrets.METASTORE_CREDENTIALS_PROD }}
SCHEMAS_DIRECTORY: '${{ env.SCHEMAS_DIRECTORY }}'
SCHEMAS_GIT_URL: '${{ env.SCHEMAS_GIT_URL }}'
WORKFLOW_NODE_ID: '${{ env.WORKFLOW_NODE_ID }}'
STEP_NAME: package
PREVIOUS_STEP_NAME: train
INPUT_PARAMETERS_BASE64: ${{ steps.train.outputs.output_base64_encoded }}
EXECUTION_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/package/execution.yaml
EXECUTION_FILE: ${{ github.workspace }}/src/package/package.py
- name: MLSpec Action - Serve
id: Serve
uses: mlspec/[email protected]
with:
METASTORE_CREDENTIALS: ${{ secrets.METASTORE_CREDENTIALS_PROD }}
SCHEMAS_DIRECTORY: '${{ env.SCHEMAS_DIRECTORY }}'
SCHEMAS_GIT_URL: '${{ env.SCHEMAS_GIT_URL }}'
WORKFLOW_NODE_ID: '${{ env.WORKFLOW_NODE_ID }}'
STEP_NAME: serve
PREVIOUS_STEP_NAME: package
INPUT_PARAMETERS_BASE64: ${{ steps.package.outputs.output_base64_encoded }}
EXECUTION_PARAMETERS_FILE_PATH: ${{ github.workspace }}/.parameters/serve/execution.yaml
EXECUTION_FILE: ${{ github.workspace }}/src/serve/serve.py