Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement DELTA in python #7

Merged
merged 1 commit into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ classifiers = [
"Programming Language :: Python :: Implementation :: PyPy",
]
dynamic = ["version"]
dependencies = ["pyarrow", "typer", "deltalake"]
dependencies = ["pyarrow", "typer"]

[project.optional-dependencies]
dev = ["ruff", "ipython"]
Expand Down
64 changes: 45 additions & 19 deletions python/falsa/app.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
import json
import random
import shutil
from enum import Enum
from pathlib import Path
from uuid import uuid4

import pyarrow as pa
import typer
Expand All @@ -19,6 +22,8 @@
JoinSmallGenerator,
)

from .utils import generate_delta_log

help_str = """
[bold][green]H2O db-like-benchmark data generation.[/green][/bold]\n
[italic][red]This implementation is unofficial![/red][/italic]
Expand Down Expand Up @@ -61,12 +66,8 @@ class Format(str, Enum):

def pprint(self):
print(f"An output format is [green]{self.value}[/green]")
if self is Format.DELTA:
print("\n[red]Warning![/red]Batch writes are not supported for Delta!")
print("The whole dataset will be materialized first!")
else:
print("\nBatch mode is supported.")
print("In case of memory problems you can try to reduce a [green]batch_size[/green].")
print("\nBatch mode is supported.")
print("In case of memory problems you can try to reduce a [green]batch_size[/green].")
print()


Expand Down Expand Up @@ -131,9 +132,10 @@ def _create_filename(ds_type: str, n: int, k: int, nas: int, fmt: Format) -> str
def _clear_prev_if_exists(fp: Path, fmt: Format) -> None:
if fp.exists():
# All is file, delta is directory
# Delta delete dir by itself.
if fmt is not Format.DELTA:
fp.unlink()
else:
shutil.rmtree(fp, ignore_errors=True)


@app.command(help="Create H2O GroupBy Dataset")
Expand All @@ -143,12 +145,10 @@ def groupby(
k: Annotated[int, typer.Option(help="An amount of keys (groups)")] = 100,
nas: Annotated[int, typer.Option(min=0, max=100, help="A percentage of NULLS")] = 0,
seed: Annotated[int, typer.Option(min=0, help="A seed of the generation")] = 42,
batch_size: Annotated[
int, typer.Option(min=0, help="A batch-size (in rows)")
] = 5_000_000,
batch_size: Annotated[int, typer.Option(min=0, help="A batch-size (in rows)")] = 5_000_000,
data_format: Annotated[
Format,
typer.Option(help="An output format for generated data. DELTA requires materialization of the whole data!"),
typer.Option(help="An output format for generated data."),
] = Format.CSV,
):
gb = GroupByGenerator(size._to(), k, nas, seed, batch_size)
Expand Down Expand Up @@ -196,7 +196,14 @@ def groupby(
writer.close()

if data_format is Format.DELTA:
write_deltalake(output_filepath, data=gb.iter_batches(), schema=schema)
output_filepath.mkdir(parents=True)
delta_file_pq = output_filepath.joinpath("data.parquet")
writer = parquet.ParquetWriter(where=delta_file_pq, schema=schema)
for batch in track(gb.iter_batches(), total=len(gb.batches)):
writer.write_batch(batch)

writer.close()
generate_delta_log(output_filepath, schema)


@app.command(help="Create three H2O join datasets")
Expand All @@ -206,12 +213,10 @@ def join(
k: Annotated[int, typer.Option(help="An amount of keys (groups)")] = 10,
nas: Annotated[int, typer.Option(min=0, max=100, help="A percentage of NULLS")] = 0,
seed: Annotated[int, typer.Option(min=0, help="A seed of the generation")] = 42,
batch_size: Annotated[
int, typer.Option(min=0, help="A batch-size (in rows)")
] = 5_000_000,
batch_size: Annotated[int, typer.Option(min=0, help="A batch-size (in rows)")] = 5_000_000,
data_format: Annotated[
Format,
typer.Option(help="An output format for generated data. DELTA requires materialization of the whole data!"),
typer.Option(help="An output format for generated data."),
] = Format.CSV,
):
random.seed(seed)
Expand Down Expand Up @@ -298,7 +303,14 @@ def join(
writer.close()

if data_format is Format.DELTA:
write_deltalake(output_small, data=join_small.iter_batches(), schema=schema_small)
output_small.mkdir(parents=True)
delta_file_pq = output_small.joinpath("data.parquet")
writer = parquet.ParquetWriter(where=delta_file_pq, schema=schema_small)
for batch in track(join_small.iter_batches(), total=len(join_small.batches)):
writer.write_batch(batch)

writer.close()
generate_delta_log(output_small, schema_small)

print()
print("An [bold]MEDIUM[/bold] data [green]schema[/green] is the following:")
Expand All @@ -320,7 +332,14 @@ def join(
writer.close()

if data_format is Format.DELTA:
write_deltalake(output_medium, data=join_medium.iter_batches(), schema=schema_medium)
output_medium.mkdir(parents=True)
delta_file_pq = output_medium.joinpath("data.parquet")
writer = parquet.ParquetWriter(where=delta_file_pq, schema=schema_medium)
for batch in track(join_medium.iter_batches(), total=len(join_medium.batches)):
writer.write_batch(batch)

writer.close()
generate_delta_log(output_medium, schema_medium)

print()
print("An [bold]BIG[/bold] data [green]schema[/green] is the following:")
Expand All @@ -342,7 +361,14 @@ def join(
writer.close()

if data_format is Format.DELTA:
write_deltalake(output_big, data=join_big.iter_batches(), schema=schema_big)
output_big.mkdir(parents=True)
delta_file_pq = output_big.joinpath("data.parquet")
writer = parquet.ParquetWriter(where=delta_file_pq, schema=schema_big)
for batch in track(join_big.iter_batches(), total=len(join_big.batches)):
writer.write_batch(batch)

writer.close()
generate_delta_log(output_big, schema_big)


def entry_point() -> None:
Expand Down
73 changes: 73 additions & 0 deletions python/falsa/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
from __future__ import annotations

import json
import time
from pathlib import Path
from uuid import uuid4

from pyarrow import Schema

PA_2_DELTA_DTYPES = {
"int32": "integer",
"int64": "long",
}


def generate_delta_log(output_filepath: Path, schema: Schema) -> None:
"""Generate a delta-log from existing parquet files and the given schema."""
file_len = 20
delta_dir = output_filepath.joinpath("_delta_log")
delta_dir.mkdir(exist_ok=True)
add_meta_log = "0" * file_len + ".json"

with open(delta_dir.joinpath(add_meta_log), "w") as meta_log:
jsons = []
# Generate "metaData"
jsons.append(
json.dumps(
{
"metaData": {
"id": uuid4().__str__(),
"format": {
"provider": "parquet",
"options": {},
},
"schemaString": json.dumps(
{
"type": "struct",
"fields": [
{
"name": field.name,
"type": PA_2_DELTA_DTYPES.get(field.type.__str__(), field.type.__str__()),
"nullable": field.nullable,
"metadata": {},
}
for field in schema
],
}
),
"configuration": {},
"partitionColumns": [],
}
}
)
)
# Generate "add"
for pp in output_filepath.glob("*.parquet"):
jsons.append(
json.dumps(
{
"add": {
"path": pp.relative_to(output_filepath).__str__(),
"partitionValues": {},
"size": pp.stat().st_size,
"modificationTime": int(time.time() * 1000),
"dataChange": True,
}
}
)
)

# Generate "protocol"
jsons.append(json.dumps({"protocol": {"minReaderVersion": 1, "minWriterVersion": 2}}))
meta_log.write("\n".join(jsons))