Skip to content

Large scale networks visualization tool using k-core and k-dense (m-core) decomposition.

Notifications You must be signed in to change notification settings

mvanmeerbeck/LaNet-vi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Maxime Vanmeerbeck
Dec 30, 2018
f975b5c · Dec 30, 2018

History

4 Commits
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018
Dec 30, 2018

Repository files navigation

LaNet-vi 3.0.1
--------------

Large scale networks visualization tool using k-core and k-dense (m-core) decomposition.

Software license: Academic Free License (AFL) [see afl-3.0.txt] 
Images license: Creative Commons License (CCL) [see:
             http://creativecommons.org/licenses/by-nc/2.0/]

http://xavier.informatics.indiana.edu/lanet-vi/

Developers: Mariano Beiró (b) 
            J. Ignacio Alvarez-Hamelin (a,b)

             (a) CONICET, Argentina
             (b) Facultad de Ingeniería, Universidad de Buenos Aires
                 Argentina (http://www.fi.uba.ar)
             
_____________________________________________________________________

Index:
     1) Requirements and Installation 
     2) Using LaNet-vi
     3) Brief description of LaNet-vi
_____________________________________________________________________
_____________________________________________________________________


===1) Requirements and Installation==================================

Software license: Academic Free License (AFL) [see afl-3.0.txt] 
Images license: Creative Commons License (CCL) [see:
             http://creativecommons.org/licenses/by-nc/2.0/]

You have to install:

1) povray
	http://www.povray.org/download/

2) g++ (Linux) or MinGW (Windows)

3) (optional) Java JVM , version 1.4 or greater (only if you want to use LaNet Visualizer to see png files)
	http://java.sun.com
	
4) (optional) rsvg	(only if you want SVG graphics, and only for Linux)

5) BLAS Library
_____________________________________________________________________

===2) Using LaNet-vi=================================================

./lanet [arguments]

Arguments can appear in any order:

	-input <file>: Name of input file containing the network edges. Required.
	-decomp kcores|kdenses: Type of decomposition to be applied. Optional. Possible values: 'kcores', 'kdenses' (see parameter '-measure'). Default: 'kcores'.
	-names <file>: Name of input file containing the nodes' names. A name '0' indicates LaNet to show the nodes' numbers. Optional.
	-font <value>: Zoom in font for nodes' names. Default: 1.0. Optional.
	-output <file>: Name of output .pov and .png files. Optional. Default: <inputFileName>.pov and <inputFileName>.png
	-coresfile <file>: Generates a k-core decomposition file with (node number, shell-index). Optional. Default: no file
	-colorsFile <file>: Name of input file containing colors for painting each node. Format: <node> <red> <green> <blue>. RGB values must be in the range [0.00-1.00]. Optional. Default: no file
	-coordDistributionAlgorithm: Algorithm for the distribution of components. Possible values: 'classic', 'pow', 'log'. Optional. Default: 'classic'.
	-logfile: Generate log files in log directory. Optional.
	-logstdout: Generate log information on stdout. Optional.
	-multigraph: Allows repeated edges.  Combined with 'weighted' allows to specify repeated edges as weight. Optional.
	-weighted: Allows weights on edges (for weighted graphs). Combined with 'multigraph' allows to specify repeated edges as weight (in this case weight must be integer). Optional.
	-strengthsIntervals: How to build p-function intervals on weighted graphs. Possible values: 'equalNodesPerInterval' or 'equalIntervalSize' or 'equalLogIntervalSize'. Optional. Default: equalIntervalSize
	-maximumStrength: Upper limit for the strength intervals. May be useful for normalizing pictures of different networks. Optional. Default: NONE
	-granularity: Amount of groups in weighted graphs. Optional. Default: maximum degree
	-bckgnd <value>: Background color. Possible values: 'white' and 'black'. Optional. Default: white
	-color <value>: Graph color. Possible values: 'col', 'bw' (black and white, one scale) and 'bwi' (black and white, interlaced scale). Optional. Default: col
	-eps <value>: Epsilon. Controls the possibility of rings overlapping. Used to tune image's rendering. Optional. Default: 0.18
	-delta <value>: Delta. Controls distance between components in graphical visualization. Optional. Default: 1.3
	-gamma <value>: Gamma. Controls the component's diameter. Optional. Default: 1.5
	-fromlayer <value>: Considers the graph induced from this layer up to the center. Optional. Default: 0
	-edges <value>: Percent of visible edges. Value: 0.0 - 1.0. Optional. Default: 0.0
	-minedges <value>: Minimum number of visible edges. Value: Integer. Optional. Default: 1000
	-W <value>: Image width in pixels. Optional. Default: 800
	-H <value>: Image height in pixels. Optional. Default: 600
	-window <hstart> <hend> <vstart> <vend>: Defines a window for rendering. hstart and hend are values between 0.0 and 1.0 defining a percentage of width. The same for vstart and vend respecting height. Default: 0.0 1.0 0.0 1.0 (whole picture)
	-u <value>: Unit length. Optional. Default: 1.0
	-net: Only for use with Network Workbench (http://nwb.slis.indiana.edu).
	-java: Shows the visualization in a window (Requires java).
	-render <renderer>: Selects the render engine. Possible values: 'povray' and 'svg'. Default: povray
	-opacity <value>: Selects the edges opacity. Only for SVG graphics. Range: 0.0-1.0. Optional. Default: 0.2
	-nocliques: Omits cliques in central core.
	-drawCircles: Draws circles for the components' borders.
	-alpha: Constant on the formula for the component ratio as a function of its weight.
	-beta: Exponent on the formula for the component ratio as a function of its weight.
	-seed: Seed for the components' distribution algorithm.
	-ratioConstant: Constant adjusting the node size. Optional. Default: Auto-adjusted.
	-kconn: Computes k-connectivity.
	-kconntype: k-connectivity type. Possible values: 'strict' and 'wide'. Default: wide
	-connectivity: Finds real connectivity between all pairs of nodes. Logs in log/gomory_hu.log to log/gomory_hu5.log. Optional.
	-innerConnectivity: Finds inner connectivity between all pairs of nodes. Logs in log/gomory_hu.log to log/gomory_hu5.log. Optional. Will hide option -connectivity.
	-onlygraphic: Generates the .png from an existing povray or svg file. In this case -input contains the .pov or .svg file. Default: false. Valid parameters in this case are: render, java
	-nographic: Omits generating the .png file.
	-colorScaleMaxValue: Sets the maximal value for the color scale. Layers with a value or equal to this value will be represented with the same color. By default, it takes the value of the highest layer.
	-showDegreeScale: Defines if the degree scale will be shown in the picture. Boolean (0, 1). Default: 1 (true).
	-measure: Defines the centrality measure to be used. Possible values: 'kdense', 'mcore'. Default: 'mcore'.

Note: the ratio horizontal_resolution/vertical_resolution should be 4/3 for a normal aspect ratio.

You will find some example networks into "samples/" directory. 

_____________________________________________________________________

-References

[1] R. Albert and A.-L. Barabási, "Statistical mechanics of complex
    networks", Rev. Mod. Phys. 74, pp. 47-, 2000.

[2] L. A. N. Amaral, A.Scala, M. Barthélemy, and H. E. Stanley, 
    "Classes of small world networks", Proc. Natl. Acad. Sci. (USA) 97, 
    pp.11149-11152, 2000.

[3] S.N. Dorogovtsev and J. F. F. Mendes, "Evolution of networks: From
    biological nets to the Internet and WWW", Oxford University Press, 2003.

[4] R. Pastor-Satorras and A. Vespignani, "Evolution and structure of the
    Internet: A statistical physics approach", Cambridge University Press, 2004.

[5] J. I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat and A. Vespignani.
    "Large scale networks fingerprinting and visualization using the 
    k-core decomposition", Advances in Neural Information Processing 
    Systems 18,  Y. Weiss,  B. Schölkopf and J. Platt ed., MIT Press, 
    Cambridge, MA, pp 41-50, 2006.

[6] M. G. Beiró, J. I. Alvarez-Hamelin and J. R. Busch. "A low complexity
    visualization tool that helps to perform complex systems analysis",
    New Journal of Physics, Focus on Visualization in Physics, 2008.

[7] V.Batagelj and M. Zaversnik, "Generalized Cores", 
    CoRR: arXiv.org/cs.DS/020203, 2002.

About

Large scale networks visualization tool using k-core and k-dense (m-core) decomposition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published