Skip to content

Commit

Permalink
update aqp demo to use data.table #157
Browse files Browse the repository at this point in the history
  • Loading branch information
brownag committed Jan 21, 2021
1 parent 7ab27af commit 122034f
Showing 1 changed file with 87 additions and 52 deletions.
139 changes: 87 additions & 52 deletions demo/aqp.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,20 @@
##
## main demo for AQP package-- a work in progress, largely just material from help files
## main demo for AQP package
##

# required packages
require(aqp)
require(ape)
require(cluster)
require(lattice)
require(reshape)
# load packages
library(aqp)
library(ape)
library(cluster)
library(lattice)
library(data.table)

# Example 1: sp1: 9 soil profiles from Pinnacles National Monument, CA.
data(sp1)

#
# 1. basic profile aggregation and plotting
#
data(sp1)
depths(sp1) <- id ~ top + bottom

# aggregate all profiles into 1,5,10,20 cm thick slabs, computing mean values by slab
Expand All @@ -29,87 +30,108 @@ s20 <- slab(sp1, ~ prop, slab.fun=mean, na.rm=TRUE, slab.structure=20)
head(s1)

# variation in segment-weighted mean property: very little
round(sapply(
list(s1, s5, s10, s20),
function(i) {
with(i, sum((bottom - top) * value) / sum(bottom - top))
}
), 1)
round(sapply(list(s1, s5, s10, s20),
function(i) {
with(i, sum((bottom - top) * value) / sum(bottom - top))
}), 1)

# combined viz
g2 <- make.groups("1cm interval"=s1, "5cm interval"=s5,
"10cm interval"=s10, "20cm interval"=s20)
g2 <- make.groups(
"1cm interval" = s1,
"5cm interval" = s5,
"10cm interval" = s10,
"20cm interval" = s20
)

# note special syntax for plotting step function
xyplot(cbind(top,bottom) ~ value, groups=which, data=g2, id=g2$which,
panel=panel.depth_function, ylim=c(250,-10),
scales=list(y=list(tick.number=10)), xlab='Property',
ylab='Depth (cm)', main='Soil Profile Aggregation by Regular Depth-slice',
auto.key=list(columns=2, points=FALSE, lines=TRUE)
xyplot(
cbind(top, bottom) ~ value,
groups = which,
data = g2,
id = g2$which,
panel = panel.depth_function,
ylim = c(250, -10),
scales = list(y = list(tick.number = 10)),
xlab = 'Property',
ylab = 'Depth (cm)',
main = 'Soil Profile Aggregation by Regular Depth-slice',
auto.key = list(
columns = 2,
points = FALSE,
lines = TRUE
)
)


# Example 2: sp3: 10 soil profiles from the Sierra Nevada Foothills Region of California.
data(sp3)

#
# 2. investigate the concept of a 'median profile'
# note that this involves aggregation between two dissimilar groups of soils
#
data(sp3)

# generate a RGB version of soil colors
# and convert to HSV for aggregation
sp3$h <- NA ; sp3$s <- NA ; sp3$v <- NA
sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets=TRUE))
sp3[, c('h','s','v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue=1)))
sp3$h <- NA
sp3$s <- NA
sp3$v <- NA
sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets = TRUE))
sp3[, c('h', 's', 'v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue = 1)))

# promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom

# aggregate across entire collection
a <- slab(sp3, fm= ~ clay + cec + ph + h + s + v, slab.structure=10)
a <- slab(sp3,
fm = ~ clay + cec + ph + h + s + v,
slab.structure = 10)

# check
str(a)

# convert back to wide format
library(reshape)
a.wide.q25 <- cast(a, top + bottom ~ variable, value=c('p.q25'))
a.wide.q50 <- cast(a, top + bottom ~ variable, value=c('p.q50'))
a.wide.q75 <- cast(a, top + bottom ~ variable, value=c('p.q75'))
a.wide.q25 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q25'))
a.wide.q50 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q50'))
a.wide.q75 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q75'))

# add a new id for the 25th, 50th, and 75th percentile pedons
a.wide.q25$id <- 'Q25'
a.wide.q50$id <- 'Q50'
a.wide.q75$id <- 'Q75'

# combine original data with "mean profile"
vars <- c('top','bottom','id','clay','cec','ph','h','s','v')
vars <- c('id', 'top', 'bottom', 'clay', 'cec', 'ph', 'h', 's', 'v')

# make data.frame version of sp3
sp3.df <- as(sp3, 'data.frame')
sp3.grouped <- rbind(
sp3.df[, vars], a.wide.q25[, vars], a.wide.q50[, vars], a.wide.q75[, vars]
)
sp3.grouped <- as.data.frame(rbind(as.data.table(horizons(sp3))[, .SD, .SDcol = vars],
a.wide.q25[, .SD, .SDcol = vars],
a.wide.q50[, .SD, .SDcol = vars],
a.wide.q75[, .SD, .SDcol = vars]))

# re-constitute the soil color from HSV triplets
# convert HSV back to standard R colors
sp3.grouped$soil_color <- with(sp3.grouped, hsv(h, s, v))

# give each horizon a name
sp3.grouped$name <- paste(round(sp3.grouped$clay), '/' ,
round(sp3.grouped$cec), '/', round(sp3.grouped$ph,1))

sp3.grouped$name <- paste(round(sp3.grouped$clay), '/' ,
round(sp3.grouped$cec), '/',
round(sp3.grouped$ph, 1))

plot(sp3.grouped)

## perform comparison, and convert to phylo class object
## D is rescaled to [0,]
d <- profile_compare(sp3.grouped, vars=c('clay','cec','ph'), max_d=100,
k=0.01, replace_na=TRUE, add_soil_flag=TRUE, rescale.result=TRUE)

require(cluster)
h <- agnes(d, method='ward')
d <- profile_compare(sp3.grouped,
vars = c('clay', 'cec', 'ph'),
max_d = 100,
k = 0.01,
replace_na = TRUE,
add_soil_flag = TRUE,
rescale.result = TRUE)

h <- agnes(d, method = 'ward')
p <- ladderize(as.phylo(as.hclust(h)))


# look at distance plot-- just the median profile
plot_distance_graph(d, 12)

Expand All @@ -121,9 +143,14 @@ round(1 - (as.matrix(d)[12, ] / max(as.matrix(d)[12, ])), 2)
depths(sp3.grouped) <- id ~ top + bottom

# setup plot: note that D has a scale of [0,1]
par(mar=c(1,1,1,1))
p.plot <- plot(p, cex=0.8, label.offset=3, direction='up', y.lim=c(2,0),
x.lim=c(1.25,length(sp3.grouped)+1), show.tip.label=FALSE)
par(mar = c(1, 1, 1, 1))
p.plot <- plot(p,
cex = 0.8,
label.offset = 3,
direction = 'up',
y.lim = c(2, 0),
x.lim = c(1.25, length(sp3.grouped) + 1),
show.tip.label = FALSE)

# get the last plot geometry
lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)
Expand All @@ -132,10 +159,18 @@ lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)
d.labels <- attr(d, 'Labels')

new_order <- sapply(1:lastPP$Ntip,
function(i) which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i))
function(i)
which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i))

# plot the profiles, in the ordering defined by the dendrogram
# with a couple fudge factors to make them fit
plot(sp3.grouped, color="soil_color", plot.order=new_order,
scaling.factor=0.01, width=0.1, cex.names=0.5,
y.offset=max(lastPP$yy)+0.1, add=TRUE)
plotSPC(
sp3.grouped,
color = "soil_color",
plot.order = new_order,
scaling.factor = 0.01,
width = 0.1,
cex.names = 0.5,
y.offset = max(lastPP$yy) + 0.1,
add = TRUE
)

0 comments on commit 122034f

Please sign in to comment.