Python script to generate Ramanujan numbers (numbers that can be expressed as the sum of two different cubes in two different ways)
For example, 1729 = 10^3 + 9^3 = 12^3 + 1^3
where ^ denotes exponentiation.
Install R
R Studio
https://www.rstudio.com/products/rstudio/download/preview/
and Python
https://www.python.org/downloads/
In R run the following commands
install.packages('sqldf')
install.packages('ggplot2')
or
install.packages('devtools')
library(devtools)
devtools::install_github('neelsoumya/ramanujan_number_generator')
Clone or download the repository
git clone https://github.com/neelsoumya/ramanujan_number_generator
python ramanujan_test_v1.py
R --no-save < analysis.R
-
ramanujan_test_v1.py
-
Usage
nohup python3 ramanujan_test_v1.py
-
-
ramanujan_numbers_list.txt
- a list of some Ramanujan numbers in the format (2, 16, 9, 15, 4104) where 2^3 + 16^3 = 9^3 + 15^3 = 4104
-
ramanujan_numbers_list2000.txt
- a list of Ramanujan numbers upto a,b,c,d <= 2000 where a^2 + b^2 = c^2 + d^2
-
ramanujan_numbers_list2001to4000.txt
- a list of Ramanujan numbers from a,b,c,d > 2000 upto a,b,c,d <= 4000 where a^2 + b^2 = c^2 + d^2
-
combined_numbers.txt
- combined list of numbers cat ramanujan*.txt > combined_numbers.txt (, ), and done removed
-
hist_ramanujan_numbers.jpg
- histogram of Ramanujan numbers
-
hist_ramanujan_numbers_log10.eps
* histogram of Ramanujan numbers * generated using analysis.R
-
hist_ramanujan_numbers.eps
- histogram of Ramanujan numbers
-
ALL.txt
- All Ramanujan numbers
Soumya Banerjee
https://sites.google.com/site/neelsoumya
https://stackoverflow.com/questions/69669784/ramanujans-number-in-c#
https://stackoverflow.com/questions/32876131/making-hardy-ramanujan-nth-number-finder-more-efficient
http://recmath.org/Magic%20Squares/narciss.htm
http://jnsilva.ludicum.org/HMR13_14/536.pdf
https://mathoverflow.net/questions/152580/recreational-mathematics-where-to-search
http://www.science.smith.edu/~jhenle/pleasingmath/
Soumya Banerjee, "Ramanujan Cab Numbers: A Recreational Mathematics Activity," Journal of Humanistic Mathematics, Volume 12 Issue 2 (July 2022), pages 503-517.
Available at:
https://scholarship.claremont.edu/jhm/vol12/iss2/29
Preprint
banerjee, soumya. 2022. “Ramanujan Cab Numbers: A Recreational Mathematics Activity.” OSF Preprints. May 10. doi:10.31219/osf.io/a2jc9