Skip to content

Commit

Permalink
add dead time to sf
Browse files Browse the repository at this point in the history
  • Loading branch information
mdoucet committed Mar 28, 2024
1 parent 32ef089 commit 0627eb5
Show file tree
Hide file tree
Showing 7 changed files with 1,106 additions and 0 deletions.
14 changes: 14 additions & 0 deletions reduction/data/sf_197912_Si_dt_par_42_200.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# y=a+bx
#
# LambdaRequested[Angstroms] S1H[mm] (S2/Si)H[mm] S1W[mm] (S2/Si)W[mm] a b error_a error_b
#
# Medium=Si, runs: [197920, 197921, 197922, 197923, 197924, 197925, 197926, 197927, 197928, 197929, 197930, 197931]
IncidentMedium=Si LambdaRequested=9.74 S1H=0.391 S2iH=0.24999999999999978 S1W=20.005 S2iW=20.000084375 a=1.0888766996055554 b=-5.6872177686659006e-08 error_a=161.84564441183014 error_b=0.003988540742274152
IncidentMedium=Si LambdaRequested=7.043 S1H=0.39 S2iH=0.24999999999999978 S1W=19.952000000000005 S2iW=19.950864375000002 a=7.341821040427503 b=-6.012040147643712e-06 error_a=741.2376390289155 error_b=0.024193504430316405
IncidentMedium=Si LambdaRequested=4.25 S1H=0.39 S2iH=0.24999999999999978 S1W=8.779 S2iW=8.780164375000002 a=9.320962216410319 b=-3.708412514404863e-05 error_a=606.2605886476512 error_b=0.03099199091035445
IncidentMedium=Si LambdaRequested=4.25 S1H=0.39 S2iH=0.24999999999999978 S1W=20.002 S2iW=19.999844375000002 a=30.370149781266015 b=9.763444187558825e-05 error_a=2680.8766315704106 error_b=0.1365883376903538
IncidentMedium=Si LambdaRequested=4.25 S1H=0.77 S2iH=0.49312 S1W=12.489000000000004 S2iW=12.485564375000003 a=62.89965009567662 b=0.0001557592235018875 error_a=5488.459056149113 error_b=0.27948760026302427
IncidentMedium=Si LambdaRequested=4.25 S1H=0.774 S2iH=0.4930399999999997 S1W=20.001000000000005 S2iW=20.000244375 a=120.9852469160573 b=0.00020691590164400054 error_a=11657.27959807004 error_b=0.5869489140907286
IncidentMedium=Si LambdaRequested=4.25 S1H=1.525 S2iH=0.976 S1W=16.384000000000004 S2iW=16.395444375000004 a=356.40436234906264 b=0.0018275069497976878 error_a=36527.53453159627 error_b=1.8464457216875345
IncidentMedium=Si LambdaRequested=4.25 S1H=1.528 S2iH=0.976 S1W=20.004 S2iW=20.000244375 a=455.2870337782051 b=0.0018152748579145265 error_a=50088.87968853836 error_b=2.508098158009919
IncidentMedium=Si LambdaRequested=4.25 S1H=3.016 S2iH=1.9319199999999999 S1W=20.003000000000004 S2iW=20.000164375 a=2380.7392962875742 b=-0.03222957069862086 error_a=184998.5077522072 error_b=9.063057308166101
14 changes: 14 additions & 0 deletions reduction/data/sf_197912_Si_dt_par_46_300.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# y=a+bx
#
# LambdaRequested[Angstroms] S1H[mm] (S2/Si)H[mm] S1W[mm] (S2/Si)W[mm] a b error_a error_b
#
# Medium=Si, runs: [197920, 197921, 197922, 197923, 197924, 197925, 197926, 197927, 197928, 197929, 197930, 197931]
IncidentMedium=Si LambdaRequested=9.74 S1H=0.391 S2iH=0.24999999999999978 S1W=20.005 S2iW=20.000084375 a=1.0888766996055554 b=-5.6872177686659006e-08 error_a=161.84564441183014 error_b=0.003988540742274152
IncidentMedium=Si LambdaRequested=7.043 S1H=0.39 S2iH=0.24999999999999978 S1W=19.952000000000005 S2iW=19.950864375000002 a=7.341821040427503 b=-6.012040147643712e-06 error_a=741.2376390289155 error_b=0.024193504430316405
IncidentMedium=Si LambdaRequested=4.25 S1H=0.39 S2iH=0.24999999999999978 S1W=8.779 S2iW=8.780164375000002 a=9.320962216410319 b=-3.708412514404863e-05 error_a=606.2605886476512 error_b=0.03099199091035445
IncidentMedium=Si LambdaRequested=4.25 S1H=0.39 S2iH=0.24999999999999978 S1W=20.002 S2iW=19.999844375000002 a=30.370149781266015 b=9.763444187558825e-05 error_a=2680.8766315704106 error_b=0.1365883376903538
IncidentMedium=Si LambdaRequested=4.25 S1H=0.77 S2iH=0.49312 S1W=12.489000000000004 S2iW=12.485564375000003 a=62.89965009567662 b=0.0001557592235018875 error_a=5488.459056149113 error_b=0.27948760026302427
IncidentMedium=Si LambdaRequested=4.25 S1H=0.774 S2iH=0.4930399999999997 S1W=20.001000000000005 S2iW=20.000244375 a=120.9852469160573 b=0.00020691590164400054 error_a=11657.27959807004 error_b=0.5869489140907286
IncidentMedium=Si LambdaRequested=4.25 S1H=1.525 S2iH=0.976 S1W=16.384000000000004 S2iW=16.395444375000004 a=356.40436234906264 b=0.0018275069497976878 error_a=36527.53453159627 error_b=1.8464457216875345
IncidentMedium=Si LambdaRequested=4.25 S1H=1.528 S2iH=0.976 S1W=20.004 S2iW=20.000244375 a=455.2870337782051 b=0.0018152748579145265 error_a=50088.87968853836 error_b=2.508098158009919
IncidentMedium=Si LambdaRequested=4.25 S1H=3.016 S2iH=1.9319199999999999 S1W=20.003000000000004 S2iW=20.000164375 a=2380.7392962875742 b=-0.03222957069862086 error_a=184998.5077522072 error_b=9.063057308166101
362 changes: 362 additions & 0 deletions reduction/lr_reduction/scaling_factors/LRDirectBeamSort.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,362 @@
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
# pylint: disable=no-init,invalid-name
from mantid.api import *
from mantid.simpleapi import *
from mantid.kernel import *
import functools
import numpy as np
from typing import List, Tuple
import datetime
from math import ceil

THI_TOLERANCE = 0.002

from . import LRScalingFactors


class CompareTwoNXSDataForSFcalculator(object):
"""
will return -1, 0 or 1 according to the position of the nexusToPosition in relation to the
nexusToCompareWith based on the following criteria
#1: number of attenuators (ascending order)
#2: lambda requested (descending order)
#3: S2W (ascending order)
#4: S2H (descending order)
#5 if everything up to this point is identical, return 0
"""

nexusToCompareWithRun = None
nexusToPositionRun = None
resultComparison = 0

def __init__(self, nxsdataToCompareWith, nxsdataToPosition):
self.nexusToCompareWithRun = nxsdataToCompareWith.getRun()
self.nexusToPositionRun = nxsdataToPosition.getRun()

compare = self.compareParameter("LambdaRequest", "descending")
if compare != 0:
self.resultComparison = compare
return

compare = self.compareParameter("thi", "descending", tolerance=THI_TOLERANCE)
if compare != 0:
self.resultComparison = compare
return

compare = self.compareParameter("vAtt", "ascending")
if compare != 0:
self.resultComparison = compare
return

pcharge1 = self.nexusToCompareWithRun.getProperty("gd_prtn_chrg").value / nxsdataToCompareWith.getNEvents()
pcharge2 = self.nexusToPositionRun.getProperty("gd_prtn_chrg").value / nxsdataToPosition.getNEvents()

self.resultComparison = -1 if pcharge1 < pcharge2 else 1

def compareParameter(self, param, order, tolerance=0.0):
"""
Compare parameters for the two runs
:param string param: name of the parameter to compare
:param string order: ascending or descending
:param float tolerance: tolerance to apply to the comparison [optional]
"""
_nexusToCompareWithRun = self.nexusToCompareWithRun
_nexusToPositionRun = self.nexusToPositionRun

_paramNexusToCompareWith = float(_nexusToCompareWithRun.getProperty(param).value[0])
_paramNexusToPosition = float(_nexusToPositionRun.getProperty(param).value[0])

if abs(_paramNexusToPosition - _paramNexusToCompareWith) <= tolerance:
return 0

if order == "ascending":
resultLessThan = -1
resultMoreThan = 1
else:
resultLessThan = 1
resultMoreThan = -1

if _paramNexusToPosition < _paramNexusToCompareWith:
return resultLessThan
elif _paramNexusToPosition > _paramNexusToCompareWith:
return resultMoreThan
else:
return 0

def result(self):
return self.resultComparison


def sorter_function(r1, r2):
"""
Sorter function used by with the 'sorted' call to sort the direct beams.
"""
return CompareTwoNXSDataForSFcalculator(r2, r1).result()


class LRDirectBeamSort(PythonAlgorithm):
def category(self):
return "Reflectometry\\SNS"

def name(self):
return "LRDirectBeamSort"

def version(self):
return 2

def summary(self):
return "Sort a set of direct beams for the purpose of calculating scaling factors."

def PyInit(self):
self.declareProperty(
IntArrayProperty("RunList", [], direction=Direction.Input),
"List of run numbers (integers) to be sorted - takes precedence over WorkspaceList",
)
self.declareProperty(StringArrayProperty("WorkspaceList", [], direction=Direction.Input), "List of workspace names to be sorted")
self.declareProperty(
"UseLowResCut", False, direction=Direction.Input, doc="If True, an x-direction cut will be determined and used"
)
self.declareProperty("ComputeScalingFactors", True, direction=Direction.Input, doc="If True, the scaling factors will be computed")
self.declareProperty("TOFSteps", 200.0, doc="TOF bin width")
self.declareProperty("WavelengthOffset", 0.0, doc="Wavelength offset used for TOF range determination")
self.declareProperty("IncidentMedium", "Air", doc="Name of the incident medium")
self.declareProperty("OrderDirectBeamsByRunNumber", False, "Force the sequence of direct beam files to be ordered by run number")
self.declareProperty(
FileProperty("ScalingFactorFile", "", action=FileAction.OptionalSave, extensions=["cfg"]), "Scaling factor file to be created"
)
self.declareProperty(IntArrayProperty("OrderedRunList", [], direction=Direction.Output), "Ordered list of run numbers")
self.declareProperty(
StringArrayProperty("OrderedNameList", [], direction=Direction.Output),
"Ordered list of workspace names corresponding to the run list",
)
self.declareProperty("SlitTolerance", 0.02, doc="Tolerance for matching slit positions")
self.declareProperty("UseDeadTimeCorrection", False, doc="If True, correct for dead time")
self.declareProperty("ParalyzableDeadTime", True, doc="Use paralyzable dead time correction")
self.declareProperty("DeadTime", 4.2, doc="Dead time value")
self.declareProperty("DeadTimeTOFStep", 200., doc="TOF step to bin into for dead time")

def PyExec(self):
compute = self.getProperty("ComputeScalingFactors").value
lr_data = []
run_list = self.getProperty("RunList").value
if len(run_list) > 0:
for run in run_list:
workspace = LoadEventNexus(Filename="REF_L_%s" % run, OutputWorkspace="__data_file_%s" % run, MetaDataOnly=not compute)
lr_data.append(workspace)
else:
ws_list = self.getProperty("WorkspaceList").value
for ws in ws_list:
lr_data.append(mtd[ws])

sort_by_runs = self.getProperty("OrderDirectBeamsByRunNumber").value
if sort_by_runs is True:
lr_data_sorted = sorted(lr_data, key=lambda r: r.getRunNumber())
else:
lr_data_sorted = sorted(lr_data, key=functools.cmp_to_key(sorter_function))

# Set the output properties
run_numbers = [r.getRunNumber() for r in lr_data_sorted]
ws_names = [str(r) for r in lr_data_sorted]
self.setProperty("OrderedRunList", run_numbers)
self.setProperty("OrderedNameList", ws_names)

# Compute the scaling factors if requested
if compute:
sf_file = self.getProperty("ScalingFactorFile").value
if len(sf_file) == 0:
logger.error("Scaling factors were requested but no output file was set")
else:
self._compute_scaling_factors(lr_data_sorted)

def _compute_scaling_factors(self, lr_data_sorted):
"""
If we need to compute the scaling factors, group the runs by their wavelength request
@param lr_data_sorted: ordered list of workspaces
"""
group_list = []
current_group = []
_current_wl = None
_current_thi = None
for r in lr_data_sorted:
wl_ = r.getRun().getProperty("LambdaRequest").value[0]
thi = r.getRun().getProperty("thi").value[0]

if _current_thi is None or abs(thi - _current_thi) > THI_TOLERANCE or not _current_wl == wl_:
# New group
_current_wl = wl_
_current_thi = thi
if len(current_group) > 0:
group_list.append(current_group)
current_group = []

current_group.append(r)

# Add in the last group
group_list.append(current_group)

tof_steps = self.getProperty("TOFSteps").value
scaling_file = self.getProperty("ScalingFactorFile").value
# use_low_res_cut = self.getProperty("UseLowResCut").value
incident_medium = self.getProperty("IncidentMedium").value
summary = ""
for g in group_list:
if len(g) == 0:
continue

direct_beam_runs = []
peak_ranges = []
x_ranges = []
bck_ranges = []

for run in g:

peak, low_res = self._find_peak(run) # , use_low_res_cut)

att = run.getRun().getProperty("vAtt").value[0] - 1
wl = run.getRun().getProperty("LambdaRequest").value[0]
thi = run.getRun().getProperty("thi").value[0]
direct_beam_runs.append(run.getRunNumber())
peak_ranges.append(int(peak[0]))
peak_ranges.append(int(peak[1]))
x_ranges.append(int(low_res[0]))
x_ranges.append(int(low_res[1]))
bck_ranges.append(int(peak[0]) - 3)
bck_ranges.append(int(peak[1]) + 3)

summary += "%10s wl=%5s thi=%5s att=%s %5s,%5s %5s,%5s\n" % (
run.getRunNumber(),
wl,
thi,
att,
peak[0],
peak[1],
low_res[0],
low_res[1],
)

# Determine TOF range from first file
sample = g[0].getInstrument().getSample()
source = g[0].getInstrument().getSource()
source_sample_distance = sample.getDistance(source)
detector = g[0].getDetector(0)
sample_detector_distance = detector.getPos().getZ()
source_detector_distance = source_sample_distance + sample_detector_distance
h = 6.626e-34 # m^2 kg s^-1
m = 1.675e-27 # kg
wl = g[0].getRun().getProperty("LambdaRequest").value[0]
chopper_speed = g[0].getRun().getProperty("SpeedRequest1").value[0]
wl_offset = self.getProperty("WavelengthOffset").value
tof_min = source_detector_distance / h * m * (wl + wl_offset * 60.0 / chopper_speed - 1.7 * 60.0 / chopper_speed) * 1e-4
tof_max = source_detector_distance / h * m * (wl + wl_offset * 60.0 / chopper_speed + 1.7 * 60.0 / chopper_speed) * 1e-4
tof_range = [tof_min, tof_max]

summary += " TOF: %s\n\n" % tof_range

# Compute the scaling factors
logger.notice("Computing scaling factors for %s" % str(direct_beam_runs))
slit_tolerance = self.getProperty("SlitTolerance").value

use_deadtime = self.getProperty("UseDeadTimeCorrection").value
paralyzable = self.getProperty("ParalyzableDeadTime").value
deadtime = self.getProperty("DeadTime").value
deadtime_step = self.getProperty("DeadTimeTOFStep").value

algo = LRScalingFactors.LRScalingFactors()
algo.PyInit()
algo.setProperty("DirectBeamRuns", direct_beam_runs)
algo.setProperty("TOFRange", tof_range)
algo.setProperty("TOFSteps", tof_steps)
algo.setProperty("SignalPeakPixelRange", peak_ranges)
algo.setProperty("SignalBackgroundPixelRange", bck_ranges)
algo.setProperty("LowResolutionPixelRange", x_ranges)
algo.setProperty("IncidentMedium", incident_medium)
algo.setProperty("SlitTolerance", slit_tolerance)
algo.setProperty("ScalingFactorFile", scaling_file)
algo.setProperty("DirectBeamRuns", direct_beam_runs)
algo.setProperty("UseDeadTimeCorrection", use_deadtime)
algo.setProperty("ParalyzableDeadTime", paralyzable)
algo.setProperty("DeadTime", deadtime)
algo.setProperty("DeadTimeTOFStep", deadtime_step)
algo.PyExec()

# log output summary
logger.notice(summary)

@staticmethod
def _find_peak(ws, crop=25, factor=1.0) -> Tuple[List[int], List[int]]:
"""Find peak by Mantid FindPeaks with Gaussian peak in the counts
summed from detector pixels on the same row.
Assumption
1. The maximum count is belonged to the real peak
Parameters
----------
ws: MatrixWorkspace
workspace to find peak
crop: int
number of pixels to crop out at the edge of detector
factor: float
multiplier factor to extend from peak width to peak range
Returns
-------
tuple
peak range, low resolution range
"""
# Sum detector counts into 1D
y = ws.extractY()
y = np.reshape(y, (256, 304, y.shape[1]))
p_vs_t = np.sum(y, axis=0)
signal = np.sum(p_vs_t, axis=1)

# Max index as the "observed" peak center
max_index = np.argmax(signal)

# Fit peak by Gaussian
# create workspace
now = datetime.datetime.now()
ws_name = f"REL{now.hour:02}{now.minute:02}{now.second:02}{now.microsecond:04}.dat"
CreateWorkspace(DataX=np.arange(len(signal)), DataY=signal, DataE=np.sqrt(signal), OutputWorkspace=ws_name)

# prepare fitting
model_ws_name = f"{ws_name}_model"
param_ws_name = f"{ws_name}_parameter"
peak_ws_name = f"{ws_name}_peaks"

FitPeaks(
InputWorkspace=ws_name,
OutputWorkspace=peak_ws_name,
PeakCenters=f"{max_index}",
FitWindowBoundaryList=f"{crop},{signal.shape[0]-crop}",
HighBackground=False,
ConstrainPeakPositions=False,
FittedPeaksWorkspace=model_ws_name,
OutputPeakParametersWorkspace=param_ws_name,
RawPeakParameters=False,
)

# Retrieve value
peak_width = mtd[param_ws_name].cell(0, 3)
peak_center = mtd[param_ws_name].cell(0, 2)

info_str = f"{ws}: Max = {max_index}, Peak center = {peak_center}, Width = {peak_width}"
logger.notice(info_str)

# Form output
peak = [int(peak_center - factor * peak_width), int(ceil(peak_center + factor * peak_width))]

# Delete workspaces
for ws_name in [peak_ws_name, model_ws_name, param_ws_name]:
DeleteWorkspace(ws_name)

return peak, [0, 255]


AlgorithmFactory.subscribe(LRDirectBeamSort)
Loading

0 comments on commit 0627eb5

Please sign in to comment.