-
Z. Alterman, F. Karal, Propagation of elastic waves in layered media by finite difference methods, Bull. Seismol. Soc. Am. 58 (1968) 367–398.
-
R. Alford, K. Kelly, D.M. Boore, Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics 39 (1974) 834–842.
-
J. Virieux, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics 49 (1984) 1933–1942.
-
J. Gazdag, Modeling of the acoustic wave equation with transform methods, Geophysics 46 (1981) 854–859.
-
D.D. Kosloff, E. Baysal, Forward modeling by a Fourier method, Geophysics 47 (1982) 1402–1412.
-
D.D. Kosloff, M. Reshef, D. Loewenthal, Elastic wave calculations by the Fourier method, Bull. Seismol. Soc. Am. 74 (1984) 875–891.
-
B. Fornberg, The pseudospectral method: comparisons with finite differences for the elastic wave equation, Geophysics 52 (1987) 483–501.
- K.J. Marfurt, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics 49 (1984) 533–549
- Spectral-element method
D. Komatitsch, J.-P. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seismol. Soc. Am. 88 (1998) 368–392.
- Finite-volume method
E. Dormy, A. Tarantola, Numerical simulation of elastic wave propagation using a finite volume method, J. Geophys. Res., Solid Earth (1978–2012) 100 (1995) 2123–2133.
-
M.A. Dablain, The application of high-order differencing to the scalar wave equation, Geophysics 51 (1986) 54–66.
-
J.T. Etgen, High-order finite-difference reverse time migration with the 2-way non-reflecting wave equation, Stanford Exploration Project, Report-48 1986, pp. 133–146.
-
J.T. Etgen, Evaluating finite-difference operators applied to wave simulation, Stanford Exploration Project, Report-57, 1988, pp. 243–258.
-
Y. Liu, M.K. Sen, A new time–space domain high-order finite-difference method for the acoustic wave equation, J. Comput. Phys. 228 (2009) 8779–8806.
-
Y. Liu, M.K. Sen, Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation, J. Comput. Phys. 232 (2013) 327–345
-
O. Holberg, Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena, Geophys. Prospect. 35 (1987) 629–655.
-
J.T. Etgen, A tutorial on optimizing time domain finite-difference schemes: “Beyond Holberg”, Stanford Exploration Project, Report-129, 2007, pp. 33–43.
-
H. Zhou, G. Zhang, Prefactored optimized compact finite-difference schemes for second spatial derivatives, Geophysics 76 (2011) WB87–WB95.
-
C. Chu, P.L. Stoffa, Determination of finite-difference weights using scaled binomial windows, Geophysics 77 (2012) W17–W26.
-
J. Zhang, Z. Yao, Optimized explicit finite-difference schemes for spatial derivatives using maximum norm, J. Comput. Phys. 250 (2013) 511–526.
-
J. Zhang, Z. Yao, Optimized finite-difference operator for broadband seismic wave modeling, Geophysics 78 (2013) A13–A18.
-
Y. Liu, Globally optimal finite-difference schemes based on least squares, Geophysics 78 (2013) T113–T132.
-
S. Tan, L. Huang, A staggered-grid finite-difference scheme optimized in the time-space domain for modeling scalar-wave propagation in geophysical problems, J. Comput. Phys. 276 (2014) 613–634.
-
Y. Wang, W. Liang, Z. Nashed, X. Li, G. Liang, C. Yang, Seismic modeling by optimizing regularized staggered-grid finite-difference operators using a time–space-domain dispersion-relationship-preserving method, Geophysics 79 (2014) T277–T285.
-
W. Sun, B. Zhou, L.Y. Fu, A staggered-grid convolutional differentiator for elastic wave modelling, J. Comput. Phys. 301 (2015) 59–76.
-
J.P. Boris, D.L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38–69.
-
T. Fei, K. Larner, Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport, Geophysics 60 (1995) 1830–1842.
-
D. Yang, E. Liu, Z. Zhang, J. Teng, Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique, Geophys. J. Int. 148 (2002) 320–328.
-
D. Yang, J. Teng, Z. Zhang, E. Liu, A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media, Bull. Seismol. Soc. Am. 93 (2003) 882–890.
-
D. Yang, M. Lu, R. Wu, J. Peng, An optimal nearly analytic discrete method for 2D acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 94 (2004) 1982–1991.
P. Tong, D. Yang, B. Hua, M. Wang, A high-order stereo-modeling method for solving wave equations, Bull. Seismol. Soc. Am. 103 (2013) 811–833.
-
J.B. Chen, High-order time discretizations in seismic modeling, Geophysics 72 (2007) SM115–SM122.
-
Y. Zhang, G. Zhang, D. Yingst, J. Sun, Explicit marching method for reverse time migration, in: 77th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 2007, pp. 2300–2304.
-
R. Soubaras, Y. Zhang, Two-step explicit marching method for reverse time migration, in: 78th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 2008.
-
Y. Zhang, G. Zhang, One-step extrapolation method for reverse time migration, Geophysics 74 (2009) A29–A33.
-
H. Tal-Ezer, D. Kosloff, Z. Koren, An accurate scheme for seismic forward modelling, Geophys. Prospect. 35 (1987) 479–490.
-
D. Kosloff, A. Queiroz Filho, E. Tessmer, A. Behle, Numerical solution of the acoustic and elastic wave equations by a new rapid expansion method, Geophys. Prospect. 37 (1989) 383–394.
-
R.C. Pestana, P.L. Stoffa, Time evolution of the wave equation using rapid expansion method, Geophysics 75 (2010) T121–T131.
-
E. Tessmer, Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration, Geophysics 76 (2011) S177–S185.
-
S. Fomel, L. Ying, X. Song, Seismic wave extrapolation using lowrank symbol approximation, in: 80th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 2010.
-
S. Fomel, L. Ying, X. Song, Seismic wave extrapolation using lowrank symbol approximation, Geophys. Prospect. 61 (2012) 526–536.
-
X. Song, S. Fomel, Fourier finite-difference wave propagation, Geophysics 76 (2011) T123–T129.
-
X. Song, K. Nihei, J. Stefani, Seismic modeling in acoustic variable-density media by Fourier finite differences, in: 82th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 2012.
-
X. Song, S. Fomel, L. Ying, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation, Geophys. J. Int. 193 (2013) 960–969.
-
Y.E. Li, M. Wong, R. Clapp, Equivalent accuracy at a fraction of the cost: overcoming temporal dispersion, Stanford Exploration Project, Report-150, 2013.
-
C. Stork, Eliminating nearly all dispersion error from FD modeling and RTM with minimal cost increase, in: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Tu 11 07, 2013.
-
H. Liu, N. Dai, F. Niu, W. Wu, An explicit time evolution method for acoustic wave propagation, Geophysics 79 (2014) T117–T124.
-
M. Wang, S. Xu, Finite-difference time dispersion transforms for wave propagation, Geophysics 80 (2015) WD19–WD25.
-
M. Wang, S. Xu, Time dispersion prediction and correction for wave propagation, in: 85th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 2015, pp. 3677–3681.
-
Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529–1540.
-
Reynolds, A. C., 1978, Boundary conditions for the numerical solution of wave propagation problems: Geophysics, 43, 1099–1110. doi:10.1190/1.1440881
-
Liao, Z, Huang, K, Yang, B, and Yuan, Y, 1984, A transmitting boundary for transient wave analyses: Scientia Sinica (Series A), 27, 1063–1076.
-
Higdon, R. L., 1986, Absorbing boundary conditions for difference approximations to the multidimensional wave equation: Mathematics of Computation, 47, 437–459.
-
Higdon, R. L., 1991, Absorbing boundary conditions for elastic waves: Geophysics, 56, 231–241. doi:10.1190/1.1443035
-
Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705–708. doi:10.1190/1.1441945
-
Kosloff, R., and Kosloff, D., 1986, Absorbing boundaries for wave propagation problems: Journal of Computational Physics, 63, 363–376. doi:10.1016/0021-9991(86)90199-3
-
Compani-Tabrizi, B., 1986, k-t scattering formulation of the absorptive acoustic wave equation: Wraparound and edge-effect elimination: Geophysics, 51, 2185–2192. doi:10.1190/1.1442071
-
Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, S., 1987, Absorbing boundary conditions and surface waves: Geophysics, 52, 60–71. doi:10.1190/1.1442241
-
Bérenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114, 185–200. doi:10.1006/jcph.1994.1159
-
Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72, SM155–SM167. doi:10.1190/1.2757586
-
Liu, Y., and Sen, M. K., 2010, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics, 75, A1–A6. doi:10.1190/1.3295447
-
Liu, Y., and Sen, M. K., 2012, A hybrid absorbing boundary condition for elastic staggered-grid modeling: Geophysical Prospecting, 60, 1114–1132. doi:10.1111/j.1365-2478.2011.01051.x
-
Moczo, P. (1989). Finite-difference technique for SH-wave in 2-D media using irregular grids-application to the seismic response problem. Geophys. J. Int., 99(2), 321-329. https://doi.org/10.1111/j.1365-246X.1989.tb01691.x
-
Jastram, C., and Behle, A. (1992). Acoustic modelling on a grid of vertically varying spacing. Geophys. Prospect., 40(2), 157-169. https://doi.org/10.1111/j.1365-2478.1992.tb00369.x
-
Falk, J., Tessmer, E., and Gajewski, D. (1998). Efficient finite-difference modelling of seismic waves using locally adjustable time steps. Geophys. Prospect., 46(6), 603-616. https://doi.org/10.1046/j.1365-2478.1998.00110.x
-
Tessmer, E. (2000). Seismic finite-difference modeling with spatially varying time steps. Geophysics, 65(4), 1290-1293. https://doi.org/10.1190/1.1444820
-
Oliveira, S. A. M. (2003). A fourth-order finite-difference method for the acoustic wave equation on irregular grids. Geophysics, 68(2), 672-676. https://doi.org/10.1190/1.1567237
-
Zhao, H. B., and Wang, X. M. (2008). An optimized staggered variable-grid finitedifference scheme and its application in cross-well acoustic survey. Chinese Sci. Bull., 53(6), 825-835. https://doi.org/10.1007/s11434-008-0042-x
-
Song, G. J., Yang, D. H., Chen, Y. L., and Ma, X. (2010). Non-uniform grid algorithm based on the WNAD method and elastic wave-field simulations. Chinese J. Geophys. (in Chinese), 53(8), 1985-1992. https://doi.org/10.3969/j.issn.0001-5733.2010.08.025
-
Chu, C. L., and Stoffa, P. L. (2012). Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media. J. Appl. Geophys., 76, 44-49. https://doi.org/10.1016/j.jappgeo.2011.09.027
-
Zhang, Z. G., Zhang, W., Li, H., and Chen, X. F. (2013). Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modeling. Geophys. J. Int., 192(3), 1179-1188. https://doi.org/10.1093/gji/ggs069
-
Zhang, J. H., and Yao, Z. X. (2017). Exact local refinement using Fourier interpolation for nonuniform-grid modeling. Earth Planet. Phys., 1, 58-62. http://doi.org/10.26464/epp2017008
-
Spitz, S. (1991). Seismic trace interpolation in the f-x domain, Geophysics 56, 785–794.
-
Bardan, V. (1987). Trace interpolation in seismic data processing. Geophysical Prospecting, 35(4), 343-358.
-
Gulunay, N., & Chambers, R. (1997). Generalized fk domain trace interpolation. In SEG Technical Program Expanded Abstracts 1997 (pp. 1100-1103). Society of Exploration Geophysicists.
-
Gülünay, N. (2003). Seismic trace interpolation in the Fourier transform domain. Geophysics, 68(1), 355-369.
-
Claerbout, J. F. (2010). Image estimation by example: Geophysical soundings image construction—Multidimensional autoregression: Stanford Exploration Project.
-
Abma, R., and N. Kabir (2005). Comparisons of interpolation methods, TLE 24, 984–989.
- Chevrot, S. (2000), Multichannel analysis of shear wave splitting, J. Geophys. Res., 105, 21,579–21,590, doi:10.1029/2000JB900199
- Favier, N., and S. Chevrot (2003), Sensitivity kernels for shear wave splitting in transverse isotropic media, Geophys. J. Int., 153, 213–228
- Favier, N., S. Chevrot, and D. Komatitsch (2004), Near-field influences on shear wave splitting and traveltime sensitivity kernels, Geophys. J. Int., 156, 467–482
- Chevrot, S. (2006), Finite frequency vectorial tomography: A new method for high resolution imaging of upper mantle anisotropy, Geophys. J. Int., 165, 641–657.
- Sieminski, A., Q. Liu, J. Trampert, and J. Tromp (2007), Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods, Geophys. J. Int., 171, 368–389
- Monteiller, V., and S. Chevrot (2011), High-resolution imaging of the deep anisotropic structure of the San Andreas Fault system beneath southern California, Geophys. J. Int., 186, 418–446.
- Zhao, L., and S. Chevrot (2011a), An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography: I–Theory, Geophys. J. Int., 185, 922–938.
- Zhao, L., and S. Chevrot (2011b), An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography: II–Numerical results, Geophys. J. Int., 185, 939–954
- Lin, Y.-P., L. Zhao, and S.-H. Hung (2014), Full-wave multiscale anisotropy tomography in Southern California, Geophys. Res. Lett., 41, 8809–8817, doi:10.1002/2014GL061855.
M.K. Sen, P.L. Stoffa, Global Optimization methods in geophysical inversion, 2nd edition., Cambridge University Press, Cambridge, 2013.
Sambridge M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space [J]. Geophysical Journal International, 1999, 138(2): 479-494
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.