Build AnyBURL (License: https://web.informatik.uni-mannheim.de/AnyBURL/)
- Create folder
build
in folderAnyBURL-RE
- Compile with
javac de/unima/ki/anyburl/*.java -d build
- Package with
jar cfv AnyBURL-RE.jar -C build .
- Create directory
build
in folderSAFRAN
- Download and extract boost 1.76.0 to folder
SAFRAN
- Have cmake installed (> 9.6.0)
- Run
cmake ../
from newely created folderbuild
- Run
make
pip install torch openbiolink
Run from project root:
python3 train.py
For maximum (default AnyBURL) aggregation approach run:
python3 save_test_submission.py ./dataset/prediction_max
For Non-redundant Noisy-OR (SAFRAN) aggregation approach run:
python3 save_test_submission.py ./dataset/prediction_nrno