-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Polarfire ethernet sensor bridge peoplenet and bodypose application s…
…upport Signed-off-by: Sunny B <[email protected]>
- Loading branch information
Showing
2 changed files
with
577 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2023-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# See README.md for detailed information. | ||
|
||
import argparse | ||
import ctypes | ||
import logging | ||
import os | ||
|
||
import holoscan | ||
from body_pose_estimation import FormatInferenceInputOp, PostprocessorOp | ||
from cuda import cuda | ||
|
||
import hololink as hololink_module | ||
|
||
|
||
class HoloscanApplication(holoscan.core.Application): | ||
def __init__( | ||
self, | ||
headless, | ||
fullscreen, | ||
cuda_context, | ||
cuda_device_ordinal, | ||
hololink_channel, | ||
camera, | ||
frame_limit, | ||
engine, | ||
): | ||
logging.info("__init__") | ||
super().__init__() | ||
self._headless = headless | ||
self._fullscreen = fullscreen | ||
self._cuda_context = cuda_context | ||
self._cuda_device_ordinal = cuda_device_ordinal | ||
self._hololink_channel = hololink_channel | ||
self._camera = camera | ||
self._frame_limit = frame_limit | ||
self._engine = engine | ||
|
||
def compose(self): | ||
logging.info("compose") | ||
if self._frame_limit: | ||
self._count = holoscan.conditions.CountCondition( | ||
self, | ||
name="count", | ||
count=self._frame_limit, | ||
) | ||
condition = self._count | ||
else: | ||
self._ok = holoscan.conditions.BooleanCondition( | ||
self, name="ok", enable_tick=True | ||
) | ||
condition = self._ok | ||
|
||
csi_to_bayer_pool = holoscan.resources.BlockMemoryPool( | ||
self, | ||
name="pool", | ||
# storage_type of 1 is device memory | ||
storage_type=1, | ||
block_size=self._camera._width | ||
* ctypes.sizeof(ctypes.c_uint16) | ||
* self._camera._height, | ||
num_blocks=2, | ||
) | ||
csi_to_bayer_operator = hololink_module.operators.CsiToBayerOp( | ||
self, | ||
name="csi_to_bayer", | ||
allocator=csi_to_bayer_pool, | ||
cuda_device_ordinal=self._cuda_device_ordinal, | ||
) | ||
self._camera.configure_converter(csi_to_bayer_operator) | ||
|
||
frame_size = csi_to_bayer_operator.get_csi_length() | ||
frame_context = self._cuda_context | ||
receiver_operator = hololink_module.operators.LinuxReceiverOperator( | ||
self, | ||
condition, | ||
name="receiver", | ||
frame_size=frame_size, | ||
frame_context=frame_context, | ||
hololink_channel=self._hololink_channel, | ||
device=self._camera, | ||
) | ||
|
||
bayer_format = self._camera.bayer_format() | ||
pixel_format = self._camera.pixel_format() | ||
image_processor_operator = hololink_module.operators.ImageProcessorOp( | ||
self, | ||
name="image_processor", | ||
# Optical black value for imx274 is 50 | ||
optical_black=50, | ||
bayer_format=bayer_format.value, | ||
pixel_format=pixel_format.value, | ||
) | ||
|
||
rgb_components_per_pixel = 3 | ||
bayer_pool = holoscan.resources.BlockMemoryPool( | ||
self, | ||
name="pool", | ||
# storage_type of 1 is device memory | ||
storage_type=1, | ||
block_size=self._camera._width | ||
* rgb_components_per_pixel | ||
* ctypes.sizeof(ctypes.c_uint16) | ||
* self._camera._height, | ||
num_blocks=2, | ||
) | ||
demosaic = holoscan.operators.BayerDemosaicOp( | ||
self, | ||
name="demosaic", | ||
pool=bayer_pool, | ||
generate_alpha=False, | ||
bayer_grid_pos=bayer_format.value, | ||
interpolation_mode=0, | ||
) | ||
|
||
gamma_correction = hololink_module.operators.GammaCorrectionOp( | ||
self, | ||
name="gamma_correction", | ||
cuda_device_ordinal=self._cuda_device_ordinal, | ||
) | ||
|
||
image_shift = hololink_module.operators.ImageShiftToUint8Operator( | ||
self, name="image_shift", shift=8 | ||
) | ||
|
||
visualizer = holoscan.operators.HolovizOp( | ||
self, | ||
name="holoviz", | ||
fullscreen=self._fullscreen, | ||
headless=self._headless, | ||
**self.kwargs("holoviz"), | ||
) | ||
|
||
# | ||
pool = holoscan.resources.UnboundedAllocator(self) | ||
preprocessor_args = self.kwargs("preprocessor") | ||
preprocessor = holoscan.operators.FormatConverterOp( | ||
self, | ||
name="preprocessor", | ||
pool=pool, | ||
**preprocessor_args, | ||
) | ||
format_input = FormatInferenceInputOp( | ||
self, | ||
name="transpose", | ||
pool=pool, | ||
) | ||
inference = holoscan.operators.InferenceOp( | ||
self, | ||
name="inference", | ||
allocator=pool, | ||
model_path_map={ | ||
"yolo_pose": self._engine, | ||
}, | ||
**self.kwargs("inference"), | ||
) | ||
postprocessor_args = self.kwargs("postprocessor") | ||
postprocessor_args["image_width"] = preprocessor_args["resize_width"] | ||
postprocessor_args["image_height"] = preprocessor_args["resize_height"] | ||
postprocessor = PostprocessorOp( | ||
self, | ||
name="postprocessor", | ||
allocator=pool, | ||
**postprocessor_args, | ||
) | ||
|
||
# | ||
self.add_flow(receiver_operator, csi_to_bayer_operator, {("output", "input")}) | ||
self.add_flow( | ||
csi_to_bayer_operator, image_processor_operator, {("output", "input")} | ||
) | ||
self.add_flow(image_processor_operator, demosaic, {("output", "receiver")}) | ||
self.add_flow(demosaic, gamma_correction, {("transmitter", "input")}) | ||
self.add_flow(gamma_correction, image_shift) | ||
self.add_flow(image_shift, visualizer, {("output", "receivers")}) | ||
self.add_flow(image_shift, preprocessor, {("output", "")}) | ||
self.add_flow(preprocessor, format_input) | ||
self.add_flow(format_input, inference, {("", "receivers")}) | ||
self.add_flow(inference, postprocessor, {("transmitter", "in")}) | ||
self.add_flow(postprocessor, visualizer, {("out", "receivers")}) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--headless", action="store_true", help="Run in headless mode") | ||
parser.add_argument( | ||
"--fullscreen", action="store_true", help="Run in fullscreen mode" | ||
) | ||
parser.add_argument( | ||
"--frame-limit", | ||
type=int, | ||
default=None, | ||
help="Exit after receiving this many frames", | ||
) | ||
default_configuration = os.path.join( | ||
os.path.dirname(__file__), "body_pose_estimation.yaml" | ||
) | ||
parser.add_argument( | ||
"--configuration", default=default_configuration, help="Configuration file" | ||
) | ||
default_engine = os.path.join(os.path.dirname(__file__), "yolov8n-pose.onnx") | ||
parser.add_argument( | ||
"--engine", | ||
default=default_engine, | ||
help="TRT engine model", | ||
) | ||
parser.add_argument( | ||
"--log-level", | ||
type=int, | ||
default=20, | ||
help="Logging level to display", | ||
) | ||
parser.add_argument( | ||
"--cam", | ||
type=int, | ||
default=0, | ||
choices=(0, 1), | ||
help="which camera to stream: 0 to stream camera connected to j14 or 1 to stream camera connected to j17 (default is 0)", | ||
) | ||
args = parser.parse_args() | ||
hololink_module.logging_level(args.log_level) | ||
logging.info("Initializing.") | ||
# Get a handle to the GPU | ||
(cu_result,) = cuda.cuInit(0) | ||
assert cu_result == cuda.CUresult.CUDA_SUCCESS | ||
cu_device_ordinal = 0 | ||
cu_result, cu_device = cuda.cuDeviceGet(cu_device_ordinal) | ||
assert cu_result == cuda.CUresult.CUDA_SUCCESS | ||
cu_result, cu_context = cuda.cuDevicePrimaryCtxRetain(cu_device) | ||
assert cu_result == cuda.CUresult.CUDA_SUCCESS | ||
|
||
# Get a handle to the Hololink device | ||
if args.cam == 0: | ||
channel_metadata = hololink_module.Enumerator.find_channel( | ||
channel_ip="192.168.0.2" | ||
) | ||
elif args.cam == 1: | ||
channel_metadata = hololink_module.Enumerator.find_channel( | ||
channel_ip="192.168.0.3" | ||
) | ||
else: | ||
raise Exception(f"Unexpected camera={args.cam}") | ||
|
||
hololink_channel = hololink_module.DataChannel(channel_metadata) | ||
# Get a handle to the camera | ||
camera = hololink_module.sensors.imx477.Imx477(hololink_channel, args.cam) | ||
|
||
# Set up the application | ||
application = HoloscanApplication( | ||
args.headless, | ||
args.fullscreen, | ||
cu_context, | ||
cu_device_ordinal, | ||
hololink_channel, | ||
camera, | ||
args.frame_limit, | ||
args.engine, | ||
) | ||
application.config(args.configuration) | ||
# Run it. | ||
hololink = hololink_channel.hololink() | ||
hololink.start() | ||
hololink.reset() | ||
camera.configure() | ||
application.run() | ||
hololink.stop() | ||
|
||
(cu_result,) = cuda.cuDevicePrimaryCtxRelease(cu_device) | ||
assert cu_result == cuda.CUresult.CUDA_SUCCESS | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.